
Nils Krah, on behalf of the GATE collaboration, in particular David Sarrut, Thomas Baudier

Development of GATE 10 - a new python-
based Geant4 application for simulations in
medical physics and medical imaging

Definition: “Monte Carlo Simulation” …

• … in medical physics and medical imaging typically refers to:

“Particle transport simulation”

• Ingredients:

Source (gammas, ions, …) Geometry (objects, beam line, patient …)

Physics (interactions of particles with the target, nuclear decay)

Output information about physics (dose, particle distribution, detector signal)

Example of “Monte Carlo Simulation” …

Degrader,
collimator, etc. Patient (from CT image) Detector (e.g. for proton

radiography)

Ion beam

Record dose

Record individual
particles’ kinematic

properties (E,
momentum, position)

Another example of “Monte Carlo Simulation” …

Patient (from CT image)
Detector (e.g. SPECT

imaging)

Record gammas and
model detector

response

Detector (e.g. SPECT
imaging)

Radioactive tracer:
distribution of gammas

emitted gammas

Examples of Monte Carlo codes

Multi-purpose:

• Geant4, FLUKA, MCNP, …

Application/physics specific:

• EGS (Electron, photon)

• Penelope (electron, photon)

• MCsquare (proton therapy)

• FRED (mainly fast dose calculation)

• …Applications built on top of Geant4:

• TOPAS

• GATE version 9.x

• new GATE 10

What does GATE 10 do?

With GATE 10, the user can build, configure and run a
Geant4 simulation from a single python script.

Design goal:

Provide a simple interface to the user while providing
access to the rich and long validated Geant4 simulation
code.

Let’s take a detour to appreciate this

Ingredients of a Monte Carlo Simulation

Source (gammas, ions, …) Geometry (objects, beamline, patient …

Physics (interactions of particles with the target, nuclear decay)

Output information about physics (dose, particle distribution, detector signal)

Ingredients: Closer look

Source (gammas, ions, …)

• Position (point source, pencil beam) or
spatial distribution (nuclear medicine,
nuclear imaging)

• Direction or distribution of directions

• Energy spectrum

• Maybe result of nuclear decay

• Described via parameters or input image
(e.g. PET, SPECT)

One primary particle 
 =  

one independent event

Generation of primaries  
is random process:

Monte Carlo

Ingredients: Closer look

• Placement and orientation of objects

• Shape of objects

• Material properties

• Object-specific physics

• Geometrically constructed (box, sphere)

• or derived from 3D voxelized image

Hierarchy of objects:  
one inside another

Geometry

Ingredients: Closer look

• Set of possible processes per particle

• Each process has a probability (cross section)

• Depends on material, energy, etc.

• Process might generate secondary particles

• Geant4 provides physics models: data-
based, tabulated, calculated etc.

• The user might partially disregard physics on
purpose (e.g. production cuts)

Step-wise particle transport

Physics

Per step:

Select process and
generate its

outcome

Ingredients: Closer look

Examples:

• Accumulate dose deposited inside a small
cylinder inside a water box

• Record position and direction of all particles
crossing a plane

• Record light output of a scintillator 
… and apply post-processing chain

• Record all prompt gammas generated by a
proton beam

“Actors” in GATEOutput information about physics

Mechanism:

Hook into the step-
wise particle

transport

Example: dose deposit in a volume

GATE Actor: At every step, get the position, check if inside
the volume of interest, get the deposited energy, and add
to the accumulated energy.

Primary particle

Steps Secondary particle

Particle stops and
deposits energy locally

Volume of interest

Side remark:
The main effort of a Monte Carlo simulation is
not “Monte Carlo”, but consistently keeping
track of particles, processes, geometry.

How would Geant4 work?

Write multiple C++ files for
geometry, source, physics, output
recording

Compile into a program

Run simulation

Process output

Complicated for users in our field

Basic G4 example B2b

How does GATE 10 work?

Write a few lines in python for
geometry, source, physics, output
recording

Execute the python script

Done

Much easier for users in our field

sim = gate.Simulation()

cm = gate.g4_units("cm")
mm = gate.g4_units("mm")
MeV = gate.g4_units("MeV")

waterbox = sim.create_and_add_volume("Box", "Waterbox")
waterbox.size = [40 * cm, 40 * cm, 40 * cm]
waterbox.translation = [0 * cm, 0 * cm, 25 * cm]
waterbox.material = "G4_WATER"

source = sim.add_source("GenericSource", "Default")
source.particle = "proton"
source.energy.mono = 150 * MeV
source.position.radius = 10 * mm
source.direction.type = "momentum"
source.direction.momentum = [0, 0, 1]
source.n = 20000

sim.add_actor("SimulationStatisticsActor", "Stats")

sim.run()

stats = sim.output.get_actor("Stats")
print(stats) Can be run in interactive python

terminal, e.g. jupyter notebook

How do I install GATE 10?

In a terminal, type:

pip install opengate

The installation …

• … takes care of architectures (linux, osx, win*) and python version

• … installs dependences: Geant4, ITK, QT, uproot, etc.

• … downloads Geant4 data and test data

*coming soon

GATE 10 under the hood

Courtesy of David Sarrut

GATE 10 under the hood

Setup simulation: Volumes, sources, actors, physics etc.

GATE 10 starts “engines”  
and creates Geant4 objects via the library interface

Geant4 executes the simulation via the G4RunManager

GATE 10 releases all G4 objects, destroys the
G4RunManager, and closes the engines

Output is available on python side via the Simulation object

Short focus on “Digitizers”

Example processing chain for a scintillator crystal:

Record individual photons in the crystal: Hits

Sum up individual photons

Ideal light signal in the crystal

Apply energy blurring

Apply temporal blurring

Measured light signal in the crystal

Short focus on “Digitizers”: GATE 10 code

Example processing chain for a scintillator crystal:
hc = sim.add_actor("DigitizerHitsCollectionActor", "Hits")
hc.mother = [crystal1.name, crystal2.name]
hc.output = ”output.root"
hc.attributes = [
 "PostPosition",
 "TotalEnergyDeposit",
 "PreStepUniqueVolumeID",
 "GlobalTime"]

Sum up individual photons

sc =
sim.add_actor("DigitizerAdderActor",
"Singles")
sc.input_digi_collection = "Hits"
sc.policy =
"EnergyWeightedCentroidPosition"
sc.output = hc.output

Apply energy blurring

bc1 = sim.add_actor("DigitizerBlurringActor",
"Singles_1")
bc1.output = ""
bc1.input_digi_collection = "Singles"
bc1.blur_attribute = "GlobalTime"
bc1.blur_method = "Gaussian"
bc1.blur_fwhm = 100 * ns

Apply temporal
blurring

bc2 =
sim.add_actor("DigitizerBlurringActor",
"Singles_2")
bc2.output = hc.output
bc2.input_digi_collection = bc1.name
bc2.blur_attribute =
"TotalEnergyDeposit"
bc2.blur_method = "InverseSquare"
bc2.blur_resolution = 0.18
bc2.blur_reference_value = 511 * keV

How is GATE 10 different from GATE 9 or TOPAS?

GATE 10 uses python scripts  
while GATE 9 and TOPAS read in static input files.

Advantage:

• Numerical operation are easy, e.g. repeat volumes, rotate or
shift detector, beam weights

• Easy to interface with other software, e.g. TPS

• Implement complex systems, e.g. PET scanner, as python
module and share it

• Numerous enhancements (speed, IA integration, digitizers, etc)

Example of how to use a complex system

From GATE 10 community contributions:  
pet_siemens_biograph.py

import opengate.contrib.pet_siemens_biograph as pet_biograph

sim = gate.Simulation()

This loads a predefined PET scanner
pet = pet_biograph.add_pet(sim, “pet")

This loads a predefined digitizer chain
pet_biograph.add_digitizer(

sim, pet.name,"test_pet.root",  
singles_name="Singles"

)

…

New features in GATE 10 compared to GATE 9.x

• Boolean volumes

• TAC source (time activated curves)

• beta+ sources

• Acceptance Angle

• Angular Response Functiions with Neural Networks

• GAN sources (conditional, spect, pet, voxelized)

• Gamma ion source (soon)

• Some (almost) ready-to-use models :

• SPECT: GE NM 670, Siemens Intevo Bold, Spectrum Veriton

(soon)

• PET: Vereos Philips, Vision Siemens (soon)

Contribute to GATE 10

GATE 10 is an open-source community project, just as
GATE 9.x has been. Any contribution is welcome!

https://github.com/OpenGATE/opengate

More than 100 tests/examples in the repository to get
you started.

https://opengate-python.readthedocs.io/

Documentation (in progress). You can edit the doc online.

https://github.com/OpenGATE/opengate
https://github.com/OpenGATE/opengate

Contribute to GATE 10 as a user

• Install GATE 10 on your machine and starts working
with it.

• pip install --pre opengate

• Ask questions via the GATE mailing list:  
see http://www.opengatecollaboration.org

• Report issues via github:  
https://github.com/OpenGATE/opengate/issues

Every feedback is welcome!

Contribute to GATE 10 as a developer

• Fork the opengate repo into your own github repo

• Create a branche for the new contribution you are
working on

• When done, create a pull request.

• Check the developers doc for details:  

https://opengate-python.readthedocs.io/en/latest/
developer_guide.html#installation-for-developers

Example contribution from MedAustron

• The medical physics team at MedAustron is implementing a new
version of their ion dose calculation pipeline based on GATE 10:

© MedAustron GATE Scientific Meeting, Krakow 2023; Martina Favaretto 2

IDEAL v2

IDEAL v2

• Simulations: Gate10 (python interface,
C++ core)

• Single python program:
• Can directly read DICOM files
• Simulations are started directly from

python
• Dose output available in python

• Multi-threading possible
• Potentially no need for external

parallelization tools

IDEAL v1

• Simulations: GateRTion v1 (C++/mac)

• 3 different python programs to:
• Preprocess the DICOM input
• Write mac file to start the

simulations in Gate
• Postprocess dose output

• Single threaded
• RAM limitation
• need for external parallelization

tools (HT Condor)

Courtesy of Martina Favaretto

Example contribution from MedAustron

• The medical physics team at MedAustron is implementing a new
version of their ion dose calculation pipeline based on GATE 10:

Courtesy of Martina Favaretto© MedAustron GATE Scientific Meeting, Krakow 2023; Martina Favaretto 8

Toward IDEAL v2: treatment plan source

• Initialization:
• Spots to scan

• from DICOM RT plan file path
• from .txt à backward compatibility Gate 9
• each spot manually à testing and debugging

• Beamline model
• set Pencil Beam energy-dependent

parameters

• Total number of particles to simulate

• Gate10 Treatment Plan source: array of Pencil Beam sources, one for each spot
• Only on python side, no Cpp implementation needed

ADD TO SIMULTION

From .txt

From RT dicom path

Another contribution from MedAustron

• The medical physics team at MedAustron is implementing
radiobiological models, e.g. the mMKM model:

Courtesy of Yihan Jia

Contribute to GATE 10: Hackathons

Participate in a hackathon event, like the last one in Krakow in
April 2023.

https://shorturl.at/bfoY5

Example enhancement from that hackathon:

Efficiency actor implemented by Aurélien Coussat, thanks!

https://shorturl.at/bfoY5

Summary

• GATE 10 has evolved from the previous developments of
the OpenGATE collaboration.

• It offers the user a simple python interface to complex
Geant4 functionality.

• Installation is extremely simple.

• The project is under lively development.

• Contributions on all levels are welcome.

Thank you

on behalf of the GATE collaboration

