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Fixed Point Algorithms and Superiorization in Wireless Communication Systems

* Source: Yukawa, M., De Lamare, R. C., & Yamada, I. (2009). Robust reduced-rank adaptive algorithm based on parallel subgradient projection and Krylov subspace. IEEE Transactions on Signal Processing, 57(12), 4660-4674.
** Source: Ahmed, Irfan, et al. "A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives." IEEE Communications Surveys & Tutorials 20.4 (2018): 3060-3097.
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Figure: Overview of methods and applications considered in [Fin22]. (* Source: [YDLY09]; ** Source: [AKS+18])
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Bounded Perturbation Resilience and Superiorization

Definition (Bounded Perturbations)

A sequence (˛nyn)n∈N in H is called a sequence of bounded perturbations if (˛n)n∈N ∈ ‘1
+(N) and (∃r ∈ R)(∀n ∈ N)

∥yn∥ ≤ r .

– An algorithm defined by a mapping T : H → H is bounded perturbation resilient, if convergence to a fixed point

x ∈ Fix(T ) = {x ∈ H | T (x) = x} is guaranteed even if bounded perturbations are added to its iterates.

– Starting from a basic algorithm

(∀n ∈ N) xn+1 = T (xn), x0 ∈ H,

the superiorization methodology [CDH10, Cen15] automatically generates its superiorized version

(∀n ∈ N) xn+1 = T (xn + ˛nyn), x0 ∈ H

by defining a sequence (˛nyn)n∈N of bounded perturbations (typically based on subgradients of a convex objective

function).

– (We also consider basic algorithms defined by a sequence (Tn)n∈N of mappings)
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Quasi Fejér Monotonicity

Definition (Quasi-Fejér Monotonicity)

Let S be a nonempty subset of H and let (xn)n∈N be a sequence in H. Then (xn)n∈N is [Com01]

– quasi-Fejér (monotone) of Type-I relative to S if

(∃("n)n∈N ∈ ‘1
+(N))(∀z ∈ S)(∀n ∈ N) ∥xn+1 − z∥ ≤ ∥xn − z∥ + "n.

– quasi-Fejér (monotone) of Type-II relative to S if

(∃("n)n∈N ∈ ‘1
+(N))(∀z ∈ S)(∀n ∈ N) ∥xn+1 − z∥2 ≤ ∥xn − z∥2 + "n.

– quasi-Fejér (monotone) of Type-III relative to S if

(∀z ∈ S)(∃("n)n∈N ∈ ‘1
+(N))(∀n ∈ N) ∥xn+1 − z∥2 ≤ ∥xn − z∥2 + "n.
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General Approach Used in [Fin22]

Figure: Original optimization problem.

1. Pose the problem in a Hilbert space
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General Approach Used in [Fin22]

Figure: Relaxed optimization problem.

1. Pose the problem in a Hilbert space

2. Relax nonconvex constraints
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General Approach Used in [Fin22]

Figure: Convex feasibility problem.

1. Pose the problem in a Hilbert space

2. Relax nonconvex constraints

3. Omit the objective function
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General Approach Used in [Fin22]

Figure: Fixed point algorithm for the convex feasibility problem.

1. Pose the problem in a Hilbert space

2. Relax nonconvex constraints

3. Omit the objective function

4. Design a bounded perturbation resilient fixed

point algorithm for the convex feasibility

problem
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General Approach Used in [Fin22]

Figure: Superiorized fixed point algorithm.

1. Pose the problem in a Hilbert space

2. Relax nonconvex constraints

3. Omit the objective function

4. Design a bounded perturbation resilient fixed

point algorithm for the convex feasibility

problem

5. Devise perturbations that reduce the

objective value and the distance to the

nonconvex constraints
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General Approach Used in [Fin22]

Figure: Superiorized fixed point algorithm.

1. Pose the problem in a Hilbert space

2. Relax nonconvex constraints

3. Omit the objective function

4. Design a bounded perturbation resilient fixed

point algorithm for the convex feasibility

problem

5. Devise perturbations that reduce the

objective value and the distance to the

nonconvex constraints

6. (The generalization to fixed point algorithms

defined by a sequence of mappings is also

considered)
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Adaptive Projected Subgradient Method (APSM)

The APSM [YO05] extends Polyak’s subgradient algorithm [Pol69] to the case where the cost functions change throughout the

iterations.

Figure: Illustration of the subgradient projection in an
exemplary variant of the APSM. (Source: [YDLY09])

– Aims at minimizing all but finitely many functions of a sequence

(Θn : H → R+)n∈N continuous convex functions over a closed

convex set K ⊂ H.

– Applies the recursion

xn+1 =

8<:PK

“
xn − –n

Θn (xn )
∥Θ′

n (xn )∥2 Θ
′
n(xn)

”
if Θ′

n(xn) ̸= 0,

xn otherwise,

where Θ′
n(xn) ∈ @Θn(xn) and –n ∈ [0, 2].
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Adaptive Projected Subgradient Method (APSM)

– Can be used to solve convex feasibility problems (possibly in infinite dimensional spaces or with infinitely many constraint

sets)

– Practical applications of the APSM includer Multiaccess interference suppression [CY08]r Acoustic feedback cancellation [YY06, WZQZ10]r Robust beamforming [STY09]r Robust subspace tracking [CKT14]r Online radio-map reconstruction [KCV+15]r Kernel-based online classification [STY08]r Peak-to-average-power-ratio reduction [CY09]r Distributed learning in diffusion networks [CYM09, CST11, SYCD18]r Adaptive symbol detection [ACYS18, ACYS20, MMS+22]

– The extrapolated alternating projection method in [BCK06], which has been used for image reconstruction [CCC+12], can

be derived as a particular case of the APSM
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Adaptive Projected Subgradient Method (APSM)

– Applications of the superiorized APSM [Fin22]r Online channel estimation for hybrid beamforming architectures [FCS20] (Perturbations are used to encourage

sparsity)r Symbol detection in multi-antenna (MIMO) systems [FCS23] (Perturbations are used to incorporate nonconvex

constraints)
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Some results on QNE mappings

Proposition (Sequences generated by perturbed QNE mappings)

Let (Tn : H → H)n∈N be a sequence of quasi-nonexpansive mappings such that C :=
T

n∈N Fix(Tn) ̸= ∅, and let (˛nyn)n∈N be

a sequence of bounded perturbations in H. Then the sequence (xn)n∈N generated by

(∀n ∈ N) xn+1 = Tn

`
xn + ˛nyn

´
, x0 ∈ H,

is quasi-Fejér of Type-I relative to C.
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Some results on QNE mappings

Proposition (Sequences generated by perturbed »-attracting QNE mappings)

Let » > 0 and let (Tn : H → H)n∈N be a sequence of »-attracting quasi-nonexpansive mappings such that

C :=
T

n∈N Fix(Tn) ̸= ∅, and let (˛nyn)n∈N be a sequence of bounded perturbations in H. Then for any bounded subset U ⊂ C
the sequence (xn)n∈N generated by

(∀n ∈ N) xn+1 = Tn

`
xn + ˛nyn

´
, x0 ∈ H

satisfies the following:
`
∃(‚n)n∈N ∈ ‘1

+(N)
´

(∀z ∈ U )(∀n ∈ N)

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − »∥xn+1 − xn∥2 + ‚n.
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Theoretical Results

Theorem (Bounded Perturbation Resilience of the APSM)

Let (Θn : H → R+)n∈N be a sequence of continuous convex functions, let K ⊂ H be a nonempty closed convex set, and denote the APSM
[YO05] update for the nth iteration by

Tn(x) =

(
PK
“

x − –n
Θn (x)

∥Θ′
n (x)∥2 Θ

′
n(x)
”

if Θ′
n(x) ̸= 0,

PK(x) otherwise,

where Θ′
n(xn) ∈ @Θn(xn) and –n ∈ [0, 2]. Moreover, let (˛nyn)n∈N ⊂ H be a sequence of bounded perturbations and suppose that

(∀n ∈ N) Ωn :=

ȷ
x ∈ K

˛̨̨̨
Θn(x) = Θ?n := inf

x∈K
Θn(x)

ff
, Θ?n = 0 and Ω :=

\
n∈N

Ωn ̸= ∅.

Then the sequence (xn)n∈N ⊂ K generated by the perturbed APSM

(∀n ∈ N) xn+1 = Tn
`

xn + ˛nyn
´

, x0 ∈ K

satisfies the following:

(a) The sequence (xn)n∈N is quasi-Fejér monotone of Type-I relative to Ω, so (xn)n∈N is bounded.

(b) Moreover, if (∀n ∈ N) –n ∈ ["1, 2 − "2] ⊂ (0, 2), then limn→∞ Θn(xn) = 0.

(c) The conditions for strong convergence of (xn)n∈N are the same as for the unperturbed APSM in [YO05].
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Summary and Main Insights from [Fin22]

– Convergence proofs for perturbed variants of widely used fixed point algorithmsr POCS, EAPM, EPPM, GPR, APSMr Applicable in finite/infinite dimensional real Hilbert spaces

– Superiorized fixed point algorithms can approximate solutions to a wide range of communication problems at low

computational costr Perturbations can be used to incorporate nonconvex constraintsr Proximal mappings (instead of subgradients) are useful to define the perturbations

– Bounded Perturbation Resilience can be useful even in online settings, where information about the solution arrives

sequentially
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Projections onto Convex Sets (POCS)

Let I := {1, ... , K}, let (∀k ∈ I) Ck ⊂ H be a nonempty closed convex set, and consider the convex feasibility problem

find x ∈ C? :=
T

k∈I Ck .

Figure: POCS with two sets and parameters –1 = 1 and –2 = 1.3.

The POCS algorithm produces a sequence (xn)n∈N in H via

(∀n ∈ N) xn+1 = T (xn), x0 ∈ H,

where T : H → H is given by the composition

T := T (–K )
CK

· · · T (–1)
C1

,

of relaxed projections

(∀– ∈ [0, 2]) T (–)
C : H → H : x 7→ x + –(PC(x) − x)
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Extrapolated Alternating Projection Method by Bauschke, Combettes, and Kruk (EAPM)

Let A ⊂ H be a closed affine subspace, let B ⊂ H be nonempty closed convex set, and consider the problem

find x ∈ A ∩ B.

The EAPM [BCK06] generates a sequence (xn)n∈N in A via the recursion

Figure: Illustration of the sequence produced by the EAPM.

(∀n ∈ N) xn+1 = T EAPM
– (xn), x0 ∈ A,

where T EAPM
– : A → A is given by

T EAPM
– (x) = x + –K (x) (PAPB(x) − x)

and K : A → [1,∞) is given by

K (x) =

(
∥PB (x)−x∥2

∥PAPB (x)−x∥2 if x =∈ B
1 otherwise
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Extrapolated Alternating Projection Method by Gurin, Polyak, and Raik (GPR)

Let A ⊂ H and B ⊂ H be nonempty closed convex sets and consider the convex feasibility problem

find x ∈ A ∩ B.

The GPR algorithm [GPR67], [Ceg12, Section 5.2.1.1] generates a sequence (xn)n∈N in A via the recursion

Figure: Illustration of the sequence produced by the GPR algorithm.

(∀n ∈ N) xn+1 = PAT GPR
–n (xn), x0 ∈ A,

where T GPR
– : A → H is given by

T GPR
– (x) = x + –ff(x)(PAPB(x) − x)

and ff : A → [1,∞) is given by

ff(x) =

(
∥PB (x)−x∥2

⟨PAPB (x)−x,PB (x)−x⟩ if x =∈ B
1 otherwise.
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[GPR67] L. G. Gurin, B. T. Polyak, and È. V. Raik, “The method of projections for finding the common point of convex sets,” Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 7, no. 6, pp. 1211–1228, 1967.
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