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Figure: Overview of methods and applications considered in [Fin22]. (* Source: [YDLY09]; ** Source: [AKS*18])
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Bounded Perturbation Resilience and Superiorization

Definition (Bounded Perturbations)

A sequence (BnYn)nen in H is called a sequence of bounded perturbations if (8,).en € £1(N) and (3r € R)(Vn € N)
llyall < r.
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A sequence (BnYn)nen in H is called a sequence of bounded perturbations if (8,).en € £1(N) and (3r € R)(Vn € N)
llyall < r.

Bounded Perturbation Resilience and Superiorization

Definition (Bounded Perturbations)

— An algorithm defined by a mapping T : H — H is bounded perturbation resilient, if convergence to a fixed point
x € Fix(T) = {x € H | T(x) = x} is guaranteed even if bounded perturbations are added to its iterates.
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Bounded Perturbation Resilience and Superiorization

Definition (Bounded Perturbations)

A sequence (BnYn)nen in H is called a sequence of bounded perturbations if (8,).en € £1(N) and (3r € R)(Vn € N)
llyall < r.

— An algorithm defined by a mapping T : H — H is bounded perturbation resilient, if convergence to a fixed point
x € Fix(T) = {x € H | T(x) = x} is guaranteed even if bounded perturbations are added to its iterates.
— Starting from a basic algorithm
(Yn €N) Xp = T(Xn), X0 € H,

the superiorization methodology [CDH10, Cen15] automatically generates its superiorized version
(Vn S N) Xnet = T(Xp + ﬁnyn)y Xo € H

by defining a sequence (BrYn)nen Of bounded perturbations (typically based on subgradients of a convex objective
function).

Bounded Perturbation Resilience of the Adaptive Projected Subgradient Method \ Jochen Fink | 9th Annual Loma Linda Workshop ?
“Z Fraunhofer

Page 4 Heinrich Hertz Institute



Bounded Perturbation Resilience and Superiorization

Definition (Bounded Perturbations)

A sequence (BnYn)nen in H is called a sequence of bounded perturbations if (8,).en € £1(N) and (3r € R)(Vn € N)
llyall < r.

— An algorithm defined by a mapping T : H — H is bounded perturbation resilient, if convergence to a fixed point
x € Fix(T) = {x € H | T(x) = x} is guaranteed even if bounded perturbations are added to its iterates.
— Starting from a basic algorithm
(Yn €N) Xp = T(Xn), X0 € H,

the superiorization methodology [CDH10, Cen15] automatically generates its superiorized version
(Vn S N) Xnet = T(Xp + ﬁnyn)y Xo € H

by defining a sequence (BrYn)nen Of bounded perturbations (typically based on subgradients of a convex objective
function).

— (We also consider basic algorithms defined by a sequence (T,),en of mappings)
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Quasi Fejér Monotonicity

Definition (Quasi-Fejér Monotonicity)

Let S be a nonempty subset of H and let (X,)nen be a sequence in H.. Then (X,)nen is [ComO01]

— quasi-Fejér (monotone) of Type-l relative to S if
B(en)nen € LN)Vz € S)Vn EN)  |[[Xn1 — 2|| < [|X0 — 2| + €5
— quasi-Fejér (monotone) of Type-ll relative to S if
(Henner € LMNN(VZ ES(VNEN)  xn —2|* < [|xs — 2]* + €.
— quasi-Fejér (monotone) of Type-lll relative to S if

(V2 € S)3(en)nen € LNV EN) [ Xp1 — 2||° < [I%0 — 2||° + €0
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General Approach Used in [Fin22]

1. Pose the problem in a Hilbert space

x minimize f(x
xeAnB S

f@x)

Figure: Original optimization problem.
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General Approach Used in [Fin22]

1. Pose the problem in a Hilbert space

A = conv(A)

2. Relax nonconvex constraints

=

x minimize f (x)
xeAnB

f@x)

Figure: Relaxed optimization problem.
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General Approach Used in [Fin22]

1. Pose the problem in a Hilbert space

A = conv(A .
A4) 2. Relax nonconvex constraints

findx € ANB
mnex 3. Omit the objective function

Figure: Convex feasibility problem.
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General Approach Used in [Fin22]

1. Pose the problem in a Hilbert space

A = conv(A)

Xng1 = T(xn) . Relax nonconvex constraints

2
fix(I) = A4 nB 3. Omit the objective function
4

. Design a bounded perturbation resilient fixed
point algorithm for the convex feasibility
problem

Figure: Fixed point algorithm for the convex feasibility problem.
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General Approach Used in [Fin22]

1. Pose the problem in a Hilbert space

. Relax nonconvex constraints

2
X =T(x, +
wra =T + fuyn) 3. Omit the objective function
4

. Design a bounded perturbation resilient fixed
nv(A) point algorithm for the convex feasibility
problem

5. Devise perturbations that reduce the
objective value and the distance to the
nonconvex constraints

Figure: Superiorized fixed point algorithm.
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1. Pose the problem in a Hilbert space

INWA " 4

General Approach Used in [Fin22]

. Relax nonconvex constraints

2
Xni1 = T(x, + ) . o X
ntt = Taln + Bl 3. Omit the objective function
4

. Design a bounded perturbation resilient fixed

nv(A) point algorithm for the convex feasibility
problem

5. Devise perturbations that reduce the

objective value and the distance to the
nonconvex constraints

oo 6. (The generalization to fixed point algorithms
defined by a sequence of mappings is also
considered)

Figure: Superiorized fixed point algorithm.
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The APSM [YOO05] extends Polyak’s subgradient algorithm [Pol69] to the case where the cost functions change throughout the

iterations.

Oy (h)

H lev<o©p Tepor)the)

tangent plane

Figure: lllustration of the subgradient projection in an
exemplary variant of the APSM. (Source: [YDLY09])
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The APSM [YOO05] extends Polyak’s subgradient algorithm [Pol69] to the case where the cost functions change throughout the

iterations.

— Aims at minimizing all but finitely many functions of a sequence

O (h) (©, : H — R,)nen continuous convex functions over a closed

H lev<o©p Tsp(@k)ﬁhk)

tangent plane

Figure: lllustration of the subgradient projection in an
exemplary variant of the APSM. (Source: [YDLY09])

convex set IC C H.
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The APSM [YOO05] extends Polyak’s subgradient algorithm [Pol69] to the case where the cost functions change throughout the
iterations.

Adaptive Projected Subgradient Method (APSM)

— Aims at minimizing all but finitely many functions of a sequence
O (h) (©, : H — R,)nen continuous convex functions over a closed
convex set C C H.

— Applies the recursion

« Px (Xn - )\n”&”(%:))“z@f,(xn)) if @/(x,) 70,
n+l =

X otherwise,

Top(on thi) hi €3

lev<o©p

where ©/,(x,) € 80,(x,) and A, € [0, 2].

tangent plane

Figure: lllustration of the subgradient projection in an
exemplary variant of the APSM. (Source: [YDLY09])
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— Can be used to solve convex feasibility problems (possibly in infinite dimensional spaces or with infinitely many constraint
sets)

Adaptive Projected Subgradient Method (APSM)

— Practical applications of the APSM include

e Multiaccess interference suppression [CY08]

e Acoustic feedback cancellation [YY06, WZQZ10]

* Robust beamforming [STY09]

e Robust subspace tracking [CKT14]

o Online radio-map reconstruction [KCV*15]

e Kernel-based online classification [STY08]

e Peak-to-average-power-ratio reduction [CY09]

e Distributed learning in diffusion networks [CYM09, CST11, SYCD18]
o Adaptive symbol detection [ACYS18, ACYS20, MMS*22]

— The extrapolated alternating projection method in [BCK06], which has been used for image reconstruction [CCC*12], can
be derived as a particular case of the APSM
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Adaptive Projected Subgradient Method (APSM)

— Applications of the superiorized APSM [Fin22]

e Online channel estimation for hybrid beamforming architectures [FCS20] (Perturbations are used to encourage
sparsity)

e Symbol detection in multi-antenna (MIMO) systems [FCS23] (Perturbations are used to incorporate nonconvex
constraints)

Bounded Perturbation Resilience of the Adaptive Projected Subgradient Method | Jochen Fink | 9th Annual Loma Linda Workshop

Z Fraunhofer

Page 9 Heinrich Hertz Institute



Some results on QNE mappings

Proposition (Sequences generated by perturbed QNE mappings)

Let (T, : H — H)nen be a sequence of quasi-nonexpansive mappings such that C := ﬂneN Fix(T,) # 0, and let (B,Yn)nen be
a sequence of bounded perturbations in H. Then the sequence (X,)nen generated by

(Vn € N) Xnit = Tn (xn + ﬁnYn) , Xo € H,

is quasi-Fejér of Type-I relative to C.
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Some results on QNE mappings

Proposition (Sequences generated by perturbed k-attracting QNE mappings)

Letk > 0 and let(T, : H — H)nen be a sequence of k-attracting quasi-nonexpansive mappings such that
C = Npen FiX(Ta) # @, and let (Byn)nen be a sequence of bounded perturbations in H. Then for any bounded subsetUd C C
the sequence (X,)neN generated by

VneN) Xp1 =T, (Xn + ﬁnyn) . X E€H

satisfies the following: (3(n)nen € £1(N)) (V2 € U)(Vn € N)

[%n = 2[[* < [ — 2I* = K[Xpe1 — Xl|* +¥n-
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Theoretical Results

Theorem (Bounded Perturbation Resilience of the APSM)

Let (©, : H — R.)neN be a sequence of continuous convex functions, let KC C H be a nonempty closed convex set, and denote the APSM
[YOO05] update for the nth iteration by

Ta(X) = Pic ( — AnTaranE ||e'(x)\|2 e (x)) O (x) 0,
Prc) otherwise,

where @f,(x,,) € 00,(xp) and X, € [0, 2]. Moreover, let (Bnyn)nen C H be a sequence of bounded perturbations and suppose that
(VnEN) Q= {x eK ‘ On(x) = OF = xig’fc On(x) } ©r=0 and Q:= mneNQn <0.

Then the sequence (xn)nen C K generated by the perturbed APSM
(Vn€N) Xnt = To (Xn+ Ba¥n), %o €K
satisfies the following:
(@) The sequence (Xn)neN is quasi-Fejér monotone of Type-I relative to 2, so (Xp)neN iS bounded.
(b) Moreover, if (Vn € N) X\, € [€1,2 — €2] C (0, 2), then limp— oo On(Xn) = 0.

(c) The conditions for strong convergence of (Xn)ncN are the same as for the unperturbed APSM in [YOO05].
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— Convergence proofs for perturbed variants of widely used fixed point algorithms
e POCS, EAPM, EPPM, GPR, APSM
e Applicable in finite/infinite dimensional real Hilbert spaces
— Superiorized fixed point algorithms can approximate solutions to a wide range of communication problems at low
computational cost
e Perturbations can be used to incorporate nonconvex constraints

e Proximal mappings (instead of subgradients) are useful to define the perturbations

— Bounded Perturbation Resilience can be useful even in online settings, where information about the solution arrives
sequentially
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LetZ := {1,.., K}, let (Vk € I) Cx C H be a nonempty closed convex set, and consider the convex feasibility problem
find x € Cx = [z Ck-

Projections onto Convex Sets (POCS)

The POCS algorithm produces a sequence (X,)nen in H via
(Vn € N) Xpt = T(Xn), Xo € H,

where T : H — H is given by the composition

. (Ak) (A1)
CinéC, T:= TCK rley o

of relaxed projections

(X)

YAe2) 75 :H—=H: x—= x+APc(x) —x)

Ci

Figure: POCS with two sets and parameters A1 = 1 and A = 1.3.
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Extrapolated Alternating Projection Method by Bauschke, Combettes, and Kruk (EAPM)

Let A C H be a closed affine subspace, let 3 C H be nonempty closed convex set, and consider the problem
findx € AN B.

The EAPM [BCKO08] generates a sequence (X,)nen in A via the recursion

(Vn €N) Xpi = ToM(x,), Xo € A,
where T3"™ : A — Ais given by

EAPM

T (x) = X+ AK(x) (PAPB(X) — x)

and K : A — [1, 00) is given by

_lPoo—x|®
K(x) = { TPaPs—x? X ¢B

1 otherwise

Figure: lllustration of the sequence produced by the EAPM.
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Extrapolated Alternating Projection Method by Gurin, Polyak, and Raik (GPR)
Let A C H and B C *H be nonempty closed convex sets and consider the convex feasibility problem
findx € AN B.
The GPR algorithm [GPR67], [Ceg12, Section 5.2.1.1] generates a sequence (X,)nen in A via the recursion
X0 (Vn € N) Xns1 = PA T)C\;:R(Xn), Xo € A,
y where 7377 : A — H is given by
TR () = X+ AT (0)(PAP5(X) — X)
W ando : A — [1,00) is given by
N .
J llPeo)—x|1? ;
o(x) = { (PAPBH—xPBI—X) itx ¢ B
B 1 otherwise.
Figure: lllustration of the sequence produced by the GPR algorithm.
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