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History
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2009

TIDe imaging detector
(Track Imaging Detector)
Developed by Vladimir Bashkirov and 
Reinhard Schulte at Loma Linda 
University

2016

FIRE detector
(Frequency of Ion Registration)
Continued development by Fabiano 
Vasi during his PhD

2014

Further developed by Margeritha
Casiraghi at Loma Linda 
University, PSI and Gaseous
Detector Development 
Laboratory CERN. 

2020

Further development of
FIRE detector during PhD 
of Irina Kempf.



What is inside the detector chamber?
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What is inside the detector chamber?
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What is inside the detector chamber?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced? Electron Avalanche
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Monte Carlo simulation of electron 
avalanche arrival at signal read out

3D view of Monte Carlo simulation 
of Electron Avalanche



Frequency of Ion Registration Detector
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Effective Drift Voltage
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Why do we need to consider effective drift voltage?
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COMSOL Multiphysics

Garfield++ (CERN)

Simulation of electrostatic Fields

Electron avalanche simulations

Ion drift simulations

In-house Monte Carlo



Why do we need to consider effective drift voltage?
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COMSOL Multiphysics

Garfield++ (CERN)

Simulation of electrostatic Fields

Electron avalanche simulations

Ion drift simulations

In-house Monte Carlo Ion Mobility?



Ion Mobility – What is our problem?
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Ion Mobility – What is our problem?
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Experimental data by Shchemelinin et al. [7] 
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Ion Mobility – What is our problem?
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Ion Mobility – What is our problem?
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Experiment: Drift Voltage
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Experiment: Influence of Cathode Voltage
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Drift & High Voltage Only High Voltage

Streamline plots: Electric field strength is not proportional to line density!



Case: Homogenous Electric Field
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Homogenous
Electric Field

MC Simulation:
Ion arrival time

Calculate
linear fit

𝑡𝐴𝑟𝑟𝑖𝑣𝑎𝑙 = 𝑎 ⋅
1

𝑈𝑑𝑟𝑖𝑓𝑡



Case: Inhomogenous Electric Field
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Inhomogenous
Electric Field



Case: Inhomogenous Electric Field
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Inhomogenous
Electric Field

MC Simulation:
Ion arrival time
→ Different HV 

𝑡𝐴𝑟𝑟𝑖𝑣𝑎𝑙 = 𝑎 ⋅
1
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Case: Inhomogenous Electric Field
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Inhomogenous
Electric Field

𝑡𝐴𝑟𝑟𝑖𝑣𝑎𝑙 = 𝑎 ⋅
1

𝑈𝑑𝑟𝑖𝑓𝑡

𝑈𝑑𝑟𝑖𝑓𝑡

Match arrival time to
homogenous case

𝑈𝑑𝑟𝑖𝑓𝑡
𝑒𝑓𝑓

MC Simulation:
Ion arrival time
→ Different HV 



Case: Inhomogenous Electric Field

𝑈𝑑𝑟𝑖𝑓𝑡
𝑒𝑓𝑓

= 𝑈𝑑𝑟𝑖𝑓𝑡 + 𝑏 ⋅ 𝐻𝑉

𝑏 = 0.001618629
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𝑡𝐴𝑟𝑟𝑖𝑣𝑎𝑙 = 𝑎 ⋅
1

𝑈𝑑𝑟𝑖𝑓𝑡

𝑈𝑑𝑟𝑖𝑓𝑡𝑈𝑑𝑟𝑖𝑓𝑡
𝑒𝑓𝑓

1) For each drift setting, calculate linear fit:

2) Average over different drift settings:

Match arrival time to
homogenous case



Applying Correction Factor to Experimental Data
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Outlook

• Measurements with different gases

• Nitrogen (N2)

• Ion Mobility 

• Propane (C3H8)
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Determination of effective drift voltage 
in a new nanodosimetric prototype

Thank you for your attention! 
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Contact information & Sources

Irina Kempf

Email: irina.kempf@uzh.ch
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