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Aim of the work
• Main goal:  

• Proton radiotherapy dose optimization < 1 min


• Simultaneous dose and LET optimization


• Optimization using micro/nano dosimetric quantities


• Features: 

• Python based


• Extensible


• Flexible


• Fast  (GPU accelerated) 
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Mainstream optimization tools

• RayStation (clinical, dose + LET)


• matRad (Matlab based, open-source, ipopt based)


• others:


• Paul Sherrer Institute (PSI) - Java based, GPU accelerated dose optimizer


• … 

mailto:damian.borys@polsl.pl
mailto:antoni.rucinski@ifj.edu.pl


damian.borys@polsl.pl

antoni.rucinski@ifj.edu.pl 

ipopt: Software for therapy optimization

• ipopt - Interior Point OPTimizer, a software package for large-scale nonlinear optimization, EPL 
open-source license (Eclipse Public License)


• https://coin-or.github.io/Ipopt/


• solve general nonlinear programming problems of the form:


• x : are the optimization variables 


• possibly with lower and upper bounds xL<=xU


• functions f(x), g(x) are : objective function and general nonlinear constraints


• can be linear or nonlinear and convex or non-convex


• g(x) have lower and upper bounds gL<=gU
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FRED - Monte Carlo dose recalculation

• FRED - Fast paRticle thErapy Dose evaluator, 


• Fast Monte-Carlo platform for particle transport in heterogeneous media


• Allow a rapid recalculation of dose deposition in the context of Particle Therapy


• FRED can run on CPU hardware exploiting multi-core parallelism as well as on 
single or multiple GPU cards using OpenCL.


• Example: time for one patient plan simulation to obtain Dij matrix 231s (3.9min) 
[6 fields, 10818 PBs, 1E4 protons/PB]


• fred-mc.org
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FREDopt - Specification
• Goal:  

• Proton dose optimization


• Dose + LET 


• Micro / nano dosimetric approaches


• Fast  -> optimise clinical setup + adaptive therapy


• We are using Python to simplify the development process


• Based on fredTools library (fredtools.ifj.edu.pl) (sitk, numpy, pandas)


• FRED MC software is a basic tool to calculate Dij matrix 

Gajewski, et al. Commissioning of GPU–Accelerated Monte Carlo Code FRED for Clinical Applications in Proton Therapy. 

Front. Phys. 8, 403 (2021) https://doi.org/10.3389/fphy.2020.567300
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FREDopt - our idea

• Current version:


A. Optimizer algorithm: DDO - dose-difference optimization


B. Only Dose is optimized


C. Cost Function

A Mairani, et al., A Monte Carlo-based treatment planning tool for proton therapy; Phys. Med. Biol. 58 (2013) 2471–2490 doi:10.1088/0031-9155/58/8/2471 
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dose-to-water, as commonly used for treatment planning. It is computed ‘on-the-fly’ by the
method described in Sommerer et al (2013). In essence, the methodology uses the track-length
fluence of all crossing particles multiplied with the corresponding mass stopping power for
water. Dose conversion methods performed during MC particle transport, such as the one
used in the MCTP tool, are commonly referred to as ‘on-the-fly’ (cf method B of Paganetti
(2009)). This is in contrast to retroactive conversion methods, which are applied after MC dose
calculations (method A of Paganetti (2009)). In our implementation, di, j values are calculated
only once before the optimization.

The remaining two quantities, αi, j and βi, j, are the dose-weighted average (also using dose-
to-water) of the linear and quadratic term of the LQ model from PB i in voxel j, respectively,
as defined in (1). Evidently, they are only needed if a variable RBE-weighted dose DRBE is
computed.

2.4. Optimization procedure and algorithms

The absorbed dose in a voxel j is given by

Dj(N) =
∑

i∈PB

di, j · Ni , (2)

where N =
∑

i Niei is the vector of beam particle numbers for each PB i with unit vector ei,
and i runs over all PBs of the accelerator library for the chosen beam ports with Ni > 0, i.e.
i ∈ PB. For obtaining a desired dose distribution in the treated volume, a suitable N needs to
be determined. The cost function for the optimization problem can be defined as

χ2(N) =
∑

j∈PTV

w j(D̂ j − Dj)
2

D̂2
j

+
∑

j∈OAR

w j(D̂ j − Dj)
2

D̂2
j

$(D̂ j − Dj), (3)

where D̂ j denotes the prescribed dose in dose grid voxel j, Dj ≡ Dj(N) and w j is the
weighting factor associated with the grid voxel j based on the planner’s prescriptions. The first
sum runs over all grid voxels inside a PTV, while the second sum runs over all voxels inside an
OAR. $(x) is the Heaviside function, so the terms from the second sum only contribute if the
computed dose is larger than the prescribed dose. The weighting factors wi are, by default, set
to 1. In critical zones, such as region borders or interfaces between a PTV and an OAR, larger
wi can be set to improve conformity in the particular sub-region. For performing single-field
and simultaneous multiple-field optimization in water phantoms and in CT patient geometries
for multiple PTVs and OARs, the inverse problem can be solved iteratively by reverting to
standard algorithms. Since optimization is performed in the present formulation directly on
the dose grid, simultaneous multiple-field optimization is straightforward and computationally
less expensive compared to approaches using a water-equivalent representation of the patient
(e.g. Krämer and Scholz 2000, Krämer and Jäkel 2005). For the MCTP tool, two optimization
methods were implemented: a gradient-based optimization (GBO) (as described for instance
by Gemmel et al (2008)) and an approach according to Lomax (1999) which scales PB
particle numbers for a given step by a weighted mean dose-difference for each PB separately
while using a damping factor to avoid divergence. The latter algorithm is referred to as dose-
difference optimization (DDO) in the following. For the (k + 1)th iteration step, the particle
numbers Nk+1 are calculated by the DDO method as

Ni,k+1 = Ni,k ·


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
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i, j
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(4)
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FREDopt - block diagram / algorithm

optimizerStep

costFunction < Δ ϵ

buildDose costFunction

NO

YES
DONE iteration < Niterations

depending on the 
optimizer method

use the Dij matrix

build Dose, LETd,…

cost function for 
the optimizer, here 

we can include 
dose, LETd, …

output: vector of 
proton weights for 

each spot/PB

pre-optimizerStep simulate Dij (or others) matrix,  
calculate initial PB weights, read Dij

step time [s]

pre-opt 
FRED Dij 
calculate

~230

pre-opt 
initial PB 
weights

~0.45

pre-opt 
read Dij ~18

optimizer 
Step ~0.34

build Dose ~0.22

costFunction ~6E-4

A B C
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FREDopt - initial results
FREDopt


optimization
FRED MC 

recalculation of the 
TPS-optimized TP

DVH FREDopt

red DHV - FREDopt

blue DVH - FRED MC
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FREDopt - next steps

• Speed up the code 


• Using GPU accelerators (numba Python modules ?) 


• Problems: the size of Dij matrix -> Applying the sparse matrix


• Optimization algorithm: ipopt or in house implementation?


• Extending the cost Function (LETd, …)

Thank you!
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