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OUTLINE

Introduction
e Basic properties of PSDs

Quality Assurance & Applications
e Exradin W1 and W2 scintillators
* Small field dosimetry

* Invivo dosimetry

Volumetric (3D) Dosimetry

Radiography Imaging




WHaAT Is A PSD?

Scintillating material

Scintillation light

Coupling agent

Optic guide




W ATER EQUIVALENCE

T T

Air o

(L., /P) ratio to Water

12 |
Graphite
FRT Silicon e
1k " PMMA
1.05 | Polystyrene © 5
PVT o
Tr [ ]
§ s sss s g .
oos| ¢ °* ' 1hg ;
[ ] o . .
0.9 S8 o fes s e .::..
0.85 |
0.1

1
Photon Energy [MeV]

Data from NIST

(S.op/P) ratio to Water

1oL Air e -
Graphite
115 Silicon e ]
11 F PMMA o oot
;5 Polystyrene e .
2l PVT o o*’ i
&
1 ¢ooee 000 o** 5
§ oo 0 2 88II3338S 3528 S 285sMATES S038 8 sasamunsy
0.95 e® -
@
09 rggee -"‘.... ]
’ (X X7 000 © 000 © 0000000 0009
085 L Wocee 0 0ee ..:“‘.n"’:'“ © 000 o 000000 00ee
. °®
oo*®
0.8 goooe o e occem 00%° o
0.75 ool S e
0.1 1 10 100

Electron Energy [MeV]



PROPERTIES

1.002
15.0 +
[5) 6 MV X—Rays o a—a B MV X—Rays
~ -
4 ~ e— o 10 MV X—Rays
L 125 e ® 1001l
v =
100} ~ S
e . ,// 0 /‘
g e é 1.000 b A \ s A
o /" * r ’ —~ ~ — - \
a, 75 ¢ Pl [ ~o— ~ - a
2 g > S
é) /.// 3 ye
o
15 50 r e ° . —
- 240 ¢Gy/min B) A
S - . 0.999
E - * 400 cGy/min - .. +0.05 % Line
» 25¢F e -
) L~
A i
e
0.0 ki 2 L L " n L L L L 0.998 n L
0 40 80 120 160 200 240 280 320 360 400 0 100 200 300 400
Dose (cGy) Dose Rate (cGy/min)
105 | o —e Scintillator ¢—¢ LiF TLD's
A——a Air s—n Si Diode
1'00 .........................................

et o
0.95 | P

- Dii _ 980+ 0.005

0.85 | D
0.80 ._-l—. - M ==

./I’.-

=

0.90 A A—A—A-A—Aey_y g—N

Dose(Medium)/Dose(Water)

0.75 : 8
0.1 1.0 10.0

Photon Energy (MeV)
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ADVANTAGES OF PLASTIC SCINTILLATORS

v’ Linear response to dose

v Dose rate independence

v Energy independence

v’ Particle type independence for photons and electrons
v" Insensitive to RF fields

v" Real-time readout

v’ Spatial resolution

v" Fast (Real-time) response






A DaiLy QA DetecTOoR DEVICE

* Rugged, simple to construct & cost effective

« Good stability and reproducibility

» Independent of temperature and pressure

* No high-voltage bias

« Remote operation and reset & Easily used by trained technical
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EXRADIN W1 SCINTILLATOR

Detector:
— < 2.3 mm?3 sensitive volume (1)
— Clear optical fiber for transport (2)

Photodetector (3)
— Two channels
e Chromatic stem effect removal
— Stay in the vault, but shielded

Two channels electrometer with dedicated
software (4)
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EXRADIN W2 SCINTILLATOR

AAPM/IAEA TRS 483 states the scintillator + No dose rate, temperature, or energy

s the only detector with a kQ of 1.000,
making the W2 the ideal SRS detector . The W2 system features C

\als that can be

converted to a proportional analog output,

N W2 Scintillator is the ideal small fielc

'he Exradin W2

overcoming aepenc



SmALL FIELDS AND RADIOSURGERY (2001)
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Stereotactic Dosimetry
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Fig. 3. Absorbed dose as a function of depth in water, normalized to depth Fig. 4. Beam profile measurements made with the scintillator detector, the
tax for the 10-, 20-, and 30-mm cone using the scintillator detector. The diode, and the 0.1-cm® PTW ionization chamber for the 10-mm stereotactic
percent depth dose for the 10 X 10 cm? reference field size is also shown. cone.

Beddar S, Kinsella T J, Ikhlef A, Sibata C H, “Miniature 'Scintillator-Fiberoptic-PMT"' detector system for the dosimetry of small
fields in stereotactic radiosurgery”, IEEE Trans. Nucl. Sci. 48: 924-928, 2001.






SysTEM DESIGN - An example for EBRT

A — Ceramic fiducials
B — Carbon spacer

C — Scintillating fiber
D — Optical fiber

E — Polyethylene jacketing
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Abstract

We tested the potential of ruby inorganic scintillation detectc
in brachytherapy and investigated various unwanted lumine:
that may compromise their accuracy. The ISDs were com
crystal coupled to a poly(methyl methacrylate) fiber-optic ca
coupled device camera. The ISD also included a long-pa:
sandwiched between the ruby crystal and the fiber-optic cab
filter prevented the Cerenkov and fluorescence background li
induced in the fiber-optic cable from striking the ruby crystal
unwanted photoluminescence rather than the desired radiolu

10P Publishing | Institute of Physics and Engineering in Medicine Physics in Medicine & Biology

Phys. Med. Biol. 62 (2017) 5046-5075

htips://doi.org/10.1088/1361-6560/aa716e

Inorganic scintillation detectors based
on Eu-activated phosphors for %?|r
brachytherapy

Gustavo Kertzscher' and Sam Beddar'->*

! Department of Radiation Physics, The University of Texas MD Anderson Cancer
Center, Houston, TX, United States of America

2 The University of Texas Graduate School of Biomedical Sciences at Houston,
Houston, TX, United States of America

E-mail: abeddar@mdanderson.org

Received 14 December 2016, revised 24 April 2017
Accepted for publication 5 May 2017
Published 26 May 2017 Dr. Gustavo Kertzscher, Aarhus

CrossMark University Hospital
Abstract

The availability of real-time treatment verification during high-dose-
rate (HDR) brachytherapy is currently limited. Therefore, we studied the
luminescence properties of the widely commercially available scintillators
using the inorganic materials Eu-activated phosphors Y,03:Eu, YVO4:Eu,
Y,0,S:Eu, and Gd;0,S:Eu to determine whether they could be used to
accurately and precisely verify HDR brachytherapy doses in real time. The
suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs)
based on the 4 Eu-activated phosphors in powder form was determined based
on experiments with a 'Ir HDR brachytherapy source. The scintillation



Scintillation intensity, Normalized to BCF-12
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The MDACC in vivo dosimetry & verification system
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Figure 2. A. Enclosure with instrumentation for new real-time treatment verification system.
B. Real-time treatment verification system and operating software. C. Time-resolved dose
rates measured at 20 s! sample rate with treatment verification system and inorganic
scintillation detector. D. Measurement uncertainty of 1-second signal accumulation.






Proton
beam

CCD

cameras

Concept of the 3D Detector

Lateral distance (mm)
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Depth (mm)

Liquid scintillator: OptiPhase Hi-Safe 3

Diisopropyl naphthalene solvent and PPO fluor w/ bisMSB wavelength shifter
Density: 0.963 g/cm3
Peak emission: ~¥430 nm

Light emission decay time: < 20 ns
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Measurement Procedure

1 3 4

-
R
bl oIS Sum o spots for

Image acquisition coordinated with one energy layer
beam delivery

Relative intensity

In each image frame
* Measure proton range
* Measure spot position
* Measure spot intensity

180 160 140 120 100
Depth in the LS (mm)




Volumetric Scintillation Dosimetry

Top View

e () (N e

Mirror

75cm

Liquid
PVC Lucite Plastic Scintillator
[ [

HITACH

Beam’s eye view (CCD 2)

Lateral view (CCD 1)




Volumetric Scintillation Dosimetry

Courtesy of Daniel Robertson
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cintillation Dosimetry

Performance characterization of a 3D liquid
scintillation detector for discrete spot
scanning proton beam systems

Chinmay D Darne', Fahed Alsanea', Daniel G Robertson?,
Narayan Sahoo' and Sam Beddar!'~*
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Actual System Setup

________________

----- X-projection | B Z-projection I

Darne C D, Alsanea F, Robertson D G, Sahoo N and Beddar S Performance characterization of a 3D liquid scintillation detector for discrete spot
scanning proton beam systems, Phys. Med. Biol. 62 (2017), 5652-67



Imaging Patient Treatment Plans

Top view
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Front view Side view
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0 0

Normalized total light
distribution from a lateral
beam

* Prostate treatment plan (1 lateral beam)
« 17 total energies: 163.9 MeV — 203.7 MeV
« 40 MU total delivered dose






ProTON RADIOGRAPHY DETECTORS TYPES
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IMAGING WITH A LARGE SCINTILLATOR

. : camera 2
?hoot proton .befam through object (lateral view) —
into a large scintillator monolithic
solid
: scintillator
. Y Avra phantom with
3eam§ eye V|.ew camera measures heterogeneity ‘
light distribution ) —
: camera 3
» Intensity correlated to proton proton| . (beam’s-
range pencil | N eye-view)
beams'\___/ i
e Lateral cameras provide additional camera 1
information (Iateral view) g




WHAT 1s THE MOTIVATION

And why Scintillators and Cameras

* It’s what we know
e Simplicity and cost
“Off-the-shelf” electronics
Few components
Simple assembly and operation
* Clinical integration
Clinical beam delivery mode (no beam tuning for low fluence)
Fewer detector elements (distal only)



Integrative Proton
Radiography

Schematics of a proton radiography system used for
preliminary studies.

A normalized proton beam Bragg curve is pulled back
by a depth equivalent to the cube’s water equivalent
thickness.

The cumulative intensity curve measured by camera 3.
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Cumulative light signal in the depth direction is measured by the XY projection.
Proton beam transit through an object pulls back the Bragg peak, yielding a decrease in the cumulative light signal in the XY projection.
The depth on the cumulative light signal corresponding to the lost intensity is equal to the water equivalent thickness of the object.
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The set-up used for the simulation.
A proton radiograph obtained by camera 3.
(c and d) The light distribution projections captured by camera 1 and 2, respectively.



Experimental Testing of the pRad Concept

(a

phantom with

camera 2
(lateral view)

heterogeneity X
proton .
pencil |
beams

>

camera 1
(lateral view)#

l
Eray radi?grah
|

RANDO phantom

‘proton pencil beams

(b)

3

=)

cameras | N

(— o
monolithic

solid
scintillator

4

(beam’s-
eye-view)

camera 3 =

(a) A schematic of the proposed proton radiography system.
The scintillation light produced within the solid scintillator in
response to the proton beams was captured by 3 digital
cameras from 3 mutually perpendicular directions. Camera
3, placed along the beam’s-eye-view direction, generated
the proton radiograph by integrating the light fluence.
Cameras 1 and 2 generated lateral beam images that
captured the beam location, divergence, and its residual
range within the scintillator.

(b) (b) A photograph of the modified 3D dosimetry system for
experimental testing of the radiography concept. This
experimental setup used a volumetric liquid scintillator
(OptiPhase HiSafe3, PerkinElmer, Waltham, MA)
enclosed in a 20-cm? tank. A 168.8-MeV beam energy was
selected for imaging.

(c) (c) A raw projection image of the lateral view of 3 pencil
beams (captured using camera 1).

(a) (d) A proton radiograph of an MV-QA phantom imaged using
a passively scattered 160 MeV proton beam.




phantom

844

proton beam

mirrorsT

(a) Schematic of the prototype pRAD system.
This setup uses a 20-cm3 EJ-260 (Eljen
Technology, Sweetwater, TX) monolithic
solid scintillator volume and 2 cameras.

(b) A photograph of the system placed on the
patient couch within the proton gantry. Black
foam panels mounted around the system
minimize ambient light contamination.

(c) A proton radiograph of the Las Vegas
phantom generated using a 163-MeV proton
beam.
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Image quality evaluation of projection- and depth dose-based

approaches to integrating proton radiography using a monolithic

scintillator detector

Irwin Tendler' ©© , Daniel Robertson’, Chinmay Darne’, Rajesh Panthi’, Fahed Alsanea
Charles-Antoine Collins-Fekete’ and Sam Beddar ™"

y Institute of Physicd and
Engineering in Meflicine

Compare the image quality of an integrating proton radiography (PR)
system, composed of a monolithic scintillator and two digital cameras, using
integral lateral-dose and integral depth-dose image reconstruction

Purpose

techniques.

*  MCsimulation of energy deposition to create pRs of various phantoms: a slanted
aluminum cube for spatial resolution analysis and a Las Vegas phantom for

contrast analysis.

*  The light emission of the scintillator was corrected for quenching using Birks

scintillation model.

* list-mode single-particle tracking pR was used for reference data (Deffet 2018,

Darne et al 2019, Deffet et al 2020).

Single-Event tracker

EJ-260 Scintillator

—
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~ .--"‘
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beam |
scintillator volume
\ Integral lateral-dose (ILD) projection
X
A
Yy
>z
B Integral depth-dose (IDD) projection IDD curve
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Distance along profile

(A) Cumulative image of Las Vegas phantom generated using 100 x 100 pencil
beams (7.05 mm FWHM) normalized to the maximum intensity pixel value. (C)
Cumulative image produced using half beam spacing (200 x 200 pencil beams),

corresponding summed line profile is shown in (D)

Row 1 shows reconstruction results of depth-dose (DD), depth-dose-optimized (DD-
opt), beam’s eye view (BEV), and single particle tracking (PTrac) for a Las Vegas

phantom. Row 2 and 3 show x and y line profiles respectively. Distance along profile
is in units of pixels. Colorbar is shown in units of WET (mm) and is applicable to all
Las Vegas phantom images.




Experimental Studies

cameras

The monolithic scintillator detector (20 x 20 x 20 cm?3) generates light which is captured by 2 CCD cameras:
We used 164 MeV (18 cm range) pencil beams to generate radiographs. Dashed lines indicate optical paths
from scintillator to cameras.

Four Gammex cylindrical phantoms (7 cm long and diameter 2.8 cm) were selected for imaging

CD Darne, DG Robertson, F Alsanea, C-A Collins-Fekete and S Beddar, A novel proton-integrating radiography system design using a monolithic
scintillator detector: Experimental studies, NIMA, Vol. 1027, 2022



The Prototype Detector




Image Quality & WET Accyracy

‘

Proton radiographs of cortical bone phantom reconstructed
for the solid water phantom using a pencil beam grid
spacing of 2.5 mm with

(a) the beam-integration method and

(b) and the percentage depth light (PDL-opt) method.with
curvelet optimization

Sys. Performance: WET Accuracy

% Accuracy = (WETc — WETexpt) / WETcoc X 100

Summary of relative percentage accuracies for 4 phantoms using both the reconstruction
methods described in this study.

Phantoms Beam-integration method (%) PDL-opt method (%)
Solid water -0.18 + 0.35 -0.29 + 3.11
Adipose tissue -0.11 + 0.51 -0.15 + 2.64
Cortical bone -2.94 + 1.20 -0.75 + 6.11
PMMA -1.65 = 0.35 0.36 + 3.93




Pencil Beam Spacing

Beam integration method vs. PDL-opt method

:’ H

Pencil Beam grid of 2.5 mm

System Characteristics

Image uniformity = 2.6% over a 5 x 5-cm area
System stability = 0.37%
Linearity (R2) =1

10 mm




Resolution Pattern
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Point Spread Function
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Point Spread Function Correction
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Lateral Projections with Debluring

Beam eye view WET (mm) . Weighted lateral projections WET (mm) | Single particle tracking WET (mm)
I 150 = 50 =
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Proton radiographs of an XCAT phantom.

Left, The original beam-eye-view radiograph, where the severe blurring comes from the proton scattering from both phantom and
detector.

Middle, The proton radiograph was reconstructed by deblurring the beam-eye-view radiograph using weighted lateral projections of pencil
beams. Preliminary deblurring using a constant deconvolution kernel achieves a sizeable improvement in contrast.

Right, Proton radiograph reconstructed using single particle tracking method, the reference for proton imaging, included for comparison.

Courtesy of Mikaél Simard



Proton CT

An initial proton CT image was obtained by placing the skull phantom on a rotating stage and acquiring proton radiographs using
66 projection angles. The CT was reconstructed using a filtered backprojection approach incorporating a Hamming filter.




Each CT slice is
constructed from a
single row of pixels
in the image

Reconstructed slices of the 3D printed
skull phantom
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6.

Background fiber substraction
Simple filtering

Timing (long decay time)
Chromatic removal

Hyperspectral decomposition

«Avoiding» Cerenkov generation

Beaulieu L, Goulet M, Archambault L, Beddar S. Current status of scintillation dosimetry for megavoltage beams.

J Phys: Conf Ser 444: 012013, 2013.
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