

TRANSFORMING PROTON THERAPY

ProtonVDA pCT Update: Images and Algorithms

Ethan DeJongh ProtonVDA LLC October 14, 2022

Proton Imaging can help reduce range uncertainties by directly measuring proton stopping power

We aim to:

Develop a proton imaging system based on well-established fast scintillator technology.

- 1. \rightarrow High-performance, low-cost measurements of proton range.
- 2. Achieve lower dose to the patient relative to equivalent x-ray images.
- 3. Produce spatially sharp images.
- 4. Images free of artifacts from high-Z implants.

Multidisciplinary team of detector physicists, medical physicists, computer scientists, and radiation oncologists:

- ProtonVDA: Fritz DeJongh, Ethan DeJongh, Victor Rykalin
- Loyola Stritch School of Medicine: James Welsh
- Northwestern Medicine Chicago Proton Center: Mark Pankuch, Brad Kreydick
- Northern Illinois University, Dept. of Computer Science: Nick Karonis, Cesar Ordonez, John Winans, Kirk Duffin. Dept. of Physics: George Coutrakon, Christina Sarosiek
- Loma Linda University: Reinhard Schulte
- Cosylab product development team

Fiber layout cross-section for one tracking plane:

3	30	3	31		С)	1	L		2	3	3	
	3	31	(C		1	L	14	2		3	4	
$X = 0$ $X = 0.075$ $\Delta X = 0.1$													

- X-Y tracking planes upstream and downstream
- Multiplexed fiber readout
 - 32 digitized channels per tracking plane

- position ambiguities resolved using pencil beam targeting information

- reduces amount of electronics needed

- 40 x 40 x 13 cm block of scintillator for range detector
 - 4 x 4 array of PMTs
 - Output digitized into four channels: E, U, V,C
- Individual protons tracked at up to 3 MHz
- > 99% tracking efficiency
- WEPL resolution ~ 3 mm per proton
- 40 x 40 cm image field size
- Fast (<1 min) image reconstruction for radiograph

WEPL (cm)

Fast (< 1 min) online image reconstruction

Water bottle plus solid water – 180 MeV

WEPL (cm)

 Linear detector response vs. range gives very good range sensitivity

Imaging with Multiple Proton Energies – Pediatric Head Phantom

Pediatric Head Phantom with CIRS Inserts

WEPL (cm)

Measured difference: $+0.58 \pm 0.01$ mm

First pCT images – Summer 2019

Insert	RSP	RSP from pCT image In ROI for each insert (Statistical uncertainty only)	Difference (pCT - Nominal)
Sinus	0.200	0.192 ± 0.002	-0.008
Enamel	1.755	1.768 ± 0.002	0.013
Dentin	1.495	1.504 ± 0.002	0.009
Brain	1.040	1.043 ± 0.002	0.003
Spinal Cord	1.040	1.046 ± 0.002	0.006
Spinal Disc	1.070	1.079 ± 0.002	0.009
Trabecular Bone	1.100	1.106 ± 0.002	0.006
Cortical Bone	1.555	1.570 ± 0.002	0.015

* <1% RSP errors

pCT of fresh pig's head – January 2020

- 4 energies, data taken in 4 degree intervals
- Vertical CT taken for comparison

Proton radiographs taken every 4 degrees

Horizontal pCT slices – 1 mm

Contours: tympanic bullae

рСТ хСТ

Region	Volume	pCT RSP	Hor CT^a	Diff	Hor CT^b	Diff	Vert CT	Diff
0	(cm^3)	Mean SD $SE(\%)$	RSP	(%)	RSP	(%)	RSP	(%)
Bullae	0.8	$0.491 \ 0.24 \ 1.7$	0.684	-39.3	0.690	-40.5	0.634	-29.1
Adipose	3.7	$0.950 \ 0.14 \ 0.2$	0.961	-1.2	0.962	-1.3	0.954	-0.4
Muscle	2.0	$1.033 \ 0.16 \ 0.3$	1.058	-2.4	1.059	-2.5	1.052	-1.8
Tongue	9.4	$1.047 \ 0.23 \ 0.2$	1.035	1.1	1.036	1.1	1.031	1.5
Brain Stem	0.7	$0.994 \ 0.16 \ 0.6$	1.038	-4.4	1.038	-4.4	1.016	-2.2
Brain	2.5	$1.025 \ 0.16 \ 0.3$	1.037	-1.2	1.039	-1.4	1.031	-0.6
Lens	0.1	$1.099 \ 0.12 \ 1.6$	1.078	1.9	1.080	1.7	1.076	2.1
Eye Left	0.5	$1.015 \ 0.13 \ 0.5$	1.015	0.0	1.017	-0.2	1.018	-0.3
Eye Right	0.8	$1.011 \ 0.15 \ 0.5$	1.021	-1.0	1.021	-1.0	1.014	-0.3
Skull	0.5	$1.266\ 0.12\ 0.4$	1.297	-2.4	1.303	-2.9	1.320	-4.3
Mandible	0.5	$1.540 \ 0.16 \ 0.5$	1.559	-1.2	1.565	-1.6	1.562	-1.4
Sinus Air	0.1	$0.067 \ 0.12 \ 17$	0.057	15	0.058	13	0.039	42

^{*a*} Low dose protocol ^{*b*} High dose protocol

Using pRad to align the patient

Using pRad to align the patient

Using pRad to align the patient

A single pRad can be used for 3-D alignment

- Automated alignment of X-Ray DRR using TOPAS
- Iterative adjustment of one parameter at a time (6 parameters 3 rotations, 3 translations)

Our Reconstruction Algorithm: the DV method

$$d_{p} = Ax - b$$

$$d_{v} = \bar{A}^{T} d_{p}$$

$$\bar{A}^{T} = V^{-1} A^{T}$$

$$V^{-1} = diag \left(\frac{1}{\sum_{j} \alpha_{ij}^{T}}\right)$$

Early Iteration RSP DV map dV (cm) 1.4 1.3 0.04 1.2 0.02 1.1 Z (cm) 0.9 -0.02 0.7 -0.04 -10 New Iteration RSP *Real pCT of fresh meat 1.4 10 sample (no ground truth) 1.3 1.2 Z (cm) /k

-10

-10

-5

0 X (cm) 10

5

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \lambda_k \mathbf{d}_v$$

10

5

-5

-10

Optimization of λ_k

$$d_{pk} = Ax_{k} - b$$

$$d_{vk} = \bar{A}^{T}d_{pk}$$

$$x_{k+1} = x_{k} - \lambda_{k} d_{vk}$$

$$d_{p(k+1)} = Ax_{k+1} - b$$

$$= d_{pk} - \lambda_{k} Ad_{vk}$$

$$d_{v(k+1)} = \bar{A}^{T} d_{p(k+1)}$$
$$= d_{vk} - \frac{\lambda_{k}}{\lambda_{k}} \bar{A}^{T} (A d_{vk})$$

• One possible choice for λ_k : Minimize χ^2_{k+1} $\chi^{2}_{k+1} = d_{p(k+1)} \cdot d_{p(k+1)}$ $= d_{pk} \cdot d_{pk} - 2\lambda_k d_{pk} \cdot (Ad_{vk}) + \lambda_k^2 / Ad_{vk}/^2$ $= \chi_k^2 - 2\lambda_k d_{\nu k} \cdot (Ad_{\nu k}) + \lambda_k^2 |Ad_{\nu k}|^2$ $d\chi_{k+1}^2/d\lambda_k = -2 d_{pk} \cdot (Ad_{vk}) + 2\lambda_k /Ad_{vk}/^2 = 0$ $\lambda_k = d_{pk} \cdot (Ad_{vk}) / |Ad_{vk}|^2$ • Another choice for λ_k : Minimize $d_{v(k+1)} \cdot d_{v(k+1)}$ $\lambda_{k} = d_{vk} \cdot (\bar{A}^{T}Ad_{vk}) / |\bar{A}^{T}Ad_{vk}|^{2}$

Stopping Criteria

Analysis of autocorrelation function shows minimal correlations between voxels in a uniform region when 0.5 < r < 1

Figure 10: Autocorrelation functions ρ_x (left) ρ_y (middle) ρ_z (right) versus the separation δ between voxels within a ROI of the simulated cylindrical water phantom for the r values in the legend.

First ever pCT test in a gantry system! June 25, 2022

We acquired proton imaging data from 45 angles for a pediatric head phantom using 3 proton energies – 120, 162, and 198 MeV.

The test took over 6 hours to complete.

Mounting system designed and built by Cosylab

Issues affecting image reconstruction:

- Separate rotational axes for imaging system and gantry
- Shifting of detector geometry vs. angle
- Sagging of gantry vs. angle
- Change in PMT gains vs. angle
- Beam steering not well calibrated at low intensity

1 mm pCT slices from gantry data

Vertical – from front of head

Fixed beam room – 180 angles

RSP map can be updated using any set of list-mode protons

Optimize χ^2 for X-Ray CT image (x_x) subject to constraint of $d_v = 0$ for protons

Optimize χ^2 for X-Ray CT image (x_x) subject to constraint of $d_v = 0$ for protons

$$\mathcal{L}(x,y) = (x - x_x)^T W(x - x_x) + y^T d_v$$

$$\begin{split} g_x &= \partial \mathcal{L} / \partial x = 2W(x - x_x) + y^T \bar{A}^T A = 0 \ \text{where} \ W = diag(1/\sigma_i^2) \\ g_y &= \partial \mathcal{L} / \partial y = d_v = \bar{A}^T (Ax - b) = 0 \end{split}$$

Uzawa's method (from Yousef Saad's book):

- solve for x, update y - λ_k can be optimized as in the DV algorithm

$$y_{0} = 0$$

$$x_{k} = x_{x} - \frac{1}{2}VA^{T}\bar{A}y_{k}$$

$$d_{pk} = Ax_{k} - b = d_{px} - \frac{1}{2}AVA^{T}\bar{A}y_{k}$$

$$d_{vk} = \bar{A}^{T}d_{pk} = d_{vx} - \frac{1}{2}\bar{A}^{T}AVA^{T}\bar{A}y_{k}$$

$$y_{k+1} = y_{k} + \lambda_{k}d_{vk}$$

Updating RSP maps with a single pRad

Simulated head phantom:

Filled sinuses in X-Ray image

Empty sinuses in pRad

Updated RSP map from a single pRad

Updated RSP map from a single pRad – with knowledge of additional uncertainty in sinus voxels

Updated RSP map from a single pRad – using correlated voxels based on RSP

Another potential use for pRad – motion monitoring

- pencil beams can scan 10 x 10 cm2 area in 0.1 s (10 frames/second)

Simulated pRads from 4DCT (TOPAS)

Difference from average

TRANSFORMING PROTON THERAPY

Summary

Milestones Acheived:

- Demonstration of WET and RSP accuracy for pRad and pCT with phantoms
- Fast, automatic image reconstruction
- pCT images of fresh meat samples, detection of x-ray RSP errors
- Automated 3-d alignment with pRad
- Development of iterative algorithm with objective stopping criteria
- pCT from gantry-mounted system

Next Steps:

- Continue developing x-ray update method for rapid adaptive planning
- Deformable image registration with list-mode protons
- Live animal imaging, motion studies
- Clinical trials, images of human patients

*see our publications at protonvda.com