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Which Physical Quantity?
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How can we observe on a nanometric scale?

30.08.2022 7

?

Equivalence
principle



Spatial ionisation distribution

scales linearly with density

Microscopic volume

Liquid water
Macroscopic volume

Low pressure gas

Equivalence principle
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How can we observe on a nanometric scale?
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History

TIDe imaging detector

(Track Imaging Detector)

Developed by Vladimir 
Bashkirov and Reinhard 
Schulte at Loma Linda 

University

Further developed by
Margeritha Casiraghi at 

Loma Linda University, PSI 
and Gaseous Detector

Development Laboratory 
CERN. 

FIRE detector

(Frequency of Ion 
Registration)

Continued
development by

Fabiano Vasi during
his PhD

Further development of
FIRE detector during 
PhD of Irina Kempf
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How does the nanodosimetric detector work?
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What is inside the chamber?
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What is inside the chamber?
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What is inside the chamber?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced?
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How is the signal produced? Electron Avalanche
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3D view of Monte 
Carlo simulation of 
Electron Avalanche

Electric fields 
calculated with 
COMSOL Multiphysics, 
MC Simulation based 
on Garfield++ (CERN).



Simulations
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Simulation Overview

22

COMSOL Multiphysics Garfield++ (CERN)

Simulation of electrostatic Fields Electron avalanche simulations Ion drift simulations

Electric Field
Mesh



Simulation Overview
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COMSOL Multiphysics Garfield++ (CERN)

Simulation of electrostatic Fields Electron avalanche simulations Ion drift simulations

Electric Field
Mesh



Electric Field Calculations with COMSOL
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Create 3D model of detector Create meshing Calculate electric field



Simulation Overview
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COMSOL Multiphysics Garfield++ (CERN)

Simulation of electrostatic Fields Electron avalanche simulations Ion drift simulations

Electric Field
Mesh



Simulation Overview
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COMSOL Multiphysics Garfield++ (CERN)

Simulation of electrostatic Fields Electron avalanche simulations Ion drift simulations

Electric Field
Mesh



Ion Drift Simulations
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Ion Drift Simulations
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z = -1.1 cm
Alpha particle trajectory

z = 0 cm
Signal Read Out

z = 1 cm
Cathode

Dielectric Plate

Funnel effect



How long is ion drifting within hole?
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Alpha Particle
(z = -1-1 cm)

r [cm]

z [cm]

Cathode

≈ 357 µs ≈ 67 ns



Problem: Mobility data for propane gas
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(Reduced mobilities)

• Garfield++ requires mobility data

• There is no dataset for propane mobility

at low pressures & for our electric field.

We must assume a mobility value.

We can not interpret
ion arrival time 
simulation results.

The ion funnel effect
is independent of the
mobility.

𝐾0 =
𝑝 [𝑇𝑜𝑟𝑟]

760

273

𝑇 [𝐾]
𝐾



Multi-hole detector design
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?

Current: The FIRE detector measures the frequency of ion registration with a single hole.
Future: Analyze ionization tracks with multi-hole detector. 

→ How should a multi-hole detector be designed?



Funnel size

• Setup is radially symmetric

• For each annulus calculate: 

• «How many ions that started within this 

annulus reached the cathode?»

• Plot as a function of radius
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Funnel size – Logistic fit to simulation data
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Hole diameter
Funnel effect is proportional to hole radius.

Larger diameter → larger funnel effect
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Propane gas pressure
Dielectric plate hole pitch does not depend

on gas pressure.
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Cathode voltage
Higher cathode voltage

→ Larger funnel effect

→ Larger pitch needed
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Drift voltage
Higher drift voltage

→ Smaller funnel effect

→ Smaller pitch needed
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Ideal pitch configuration
Ideal pitch can be calculated for any:

• Hole diameter

• Pressure

• Electric field configuration
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Ongoing challenges with the detector
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Ongoing detector challenges

• Low detection efficiency 

• Testing new materials for dielectric 

plate & cathodes (low bulk 

resistivities) 

• Ceramic dielectric plate 

• Showed promising results at first 

(ICSD distribution visible) 

• Detector efficiency decreased from 

80% to <1%, probably due to aging 

effects. 
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Ongoing detector challenges

• Depositions on glass cathode 

• We note that overtime detection efficiency 

decreases. 

• If we exchange the glass cathode (or clean 

it), effciency is increased again. 

• Part of the depositions can be cleaned with 

medical gasoline. 

• Residual imprints remain on the material 
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Cathode depositions 
(old / cleaned) 

Cathode depositions 
(new, not cleaned yet) 



Which region are we in? 

• Large unamplified 

signals 

• Streamer? Discharge?

• Fast deterioration of 

materials

• Rapid increase in 

depositions
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Current data acquisition system: FPGA
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New data acquisition system: ADC 
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New data acquisition system

• Currently: We only register when a pulse 

occurs relative to the trigger (detection of 

alpha particles), but have no other 

information about the signal.

• Future: By using an ADC, we will get access 

to raw data of all pulses, allowing us to 

monitor pulse height, widht, area etc. 

• ADQ14DC-4C-VG-USB by Teledyne SP 

Devices
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Source: Teledyne SP Devices ADQ14DC-4C-VG-USB [4]



Signal properties can now be studied
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Ongoing Challenges with ADQ

Noise

• New signal amplification needed 

• Risk of signal shape distortion

• Filter noise within recorded data
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Thank you for your attention! 

Contact information & Sources

Irina Kempf – PhD student at University of Zurich

Email: irina.kempf@uzh.ch
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