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Fluence-modulated proton CT (FMpCT)

Aim: to use modulated pencil beams for achieving arbitrary image noise targets with FMpCT.
RSP

(rela&ve stopping power) Dose / mGy

Motivation: frequent 
imaging for particle therapy

noise in ROI Low High Low

dose outside ROI High Low Low
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Dedes et al. (2017), PMB, 62, 6026
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Dickmann et al. (2020), Med. Phys., 47, 4
Dickmann et al. (2020), PMB, in press

What is leD to do?
• Only focus on variance and only indirect handle for dose
• Include dose in opJmizaJon to further improve results



Fluence-modulated proton CT (FMpCT)

Analytical 
reconstruction

Optimization
algorithm Results
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Variance reconstruc;on
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ramp filter backprojection

(filter) backprojection

Standard reconstruc8on

Variance reconstruction

projection

variance projection

volume

variance volume



Johnson et al. (2016),
IEEE, 63, 1

Bashkirov et al. (2016),
Med. Phys., 43, 2

Proton computed tomography
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Rear tracker binning

Distance-driven binning
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Distance-driven binning
S. Rit et al. (2013), Med. Phys., 40, 3

FDK

FDK

Key information: WEPL and variance 
information is available at any distance 

between the two trackers!



Distance-driven binning
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Rear-tracker
binning

Distance-driven
binning

S. Rit et al. (2013), Med. Phys., 40, 3

own data



Distance-driven binning

July 21, 2020 Jannis Dickmann 7

S. Rit et al. (2013), Med. Phys., 40, 3

Rear-tracker
binning

Distance-driven
binning



Dose and variance optimization

STEP I
• Forward model for variance and dose

STEP II
• Bixel-wise optimization

STEP III
• Pencil beam optimization
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Dose and variance optimization
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Forward model

• Assume fluence can be modulated in small bixels
each associated with a weight 𝑤!

• Formulate problem as matrix multiplication

• More difficult for variance

• Because of the inverse dependence, a simple 
treatment planning approach is not feasible.
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Forward model: Dose

• From a Monte Carlo simulation we can get the dose 
𝑑!
"! in voxel 𝑖 at rotation angle 𝛼# for uniform 

fluence corresponding to 𝑤# = 1.
• The dose matrix then is

𝐷!# = 𝑑!
"! ( 𝛿!#

where 𝛿!# is non-zero “if voxel 𝑖 corresponds to 
weight 𝑤#”.

• A simple implementation could be

𝛿!# = *1 if 𝑥! cos 𝛼# + 𝑦! sin 𝛼# ≈ 𝜉#
0 else

• In fact we perform a linear interpolation between 
neighboring weights.
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Forward model: variance

• Variance is proportional to the inverse weights "𝑤 = "
#&

.

• From a Monte Carlo simulation we can get the variance 
𝑣$
%& in voxel 𝑖 at rotation angle 𝛼! for uniform fluence by 

rotating the distance-driven variance projection.
• The variance matrix then is

𝑉$! = 𝑣$
%& ( 𝛿$!

where 𝛿$! is defined as for the dose.

• The additional constant is 𝑐 = 𝑓&'()*+ (
,∆. '

/(
' , which 

gives

𝑉$ = 𝑓&'()*+ (
𝜋∆𝜉 0

𝑁10
0
!2"

3

𝑣$
%& ( 𝛿$! (

1
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• This is equal to variance reconstruction without filter.
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Forward model

• Implement forward model as a fast sparse
matrix multiplication using Eigen3
– 𝑁 = 60 × 60 × 30 = 10" voxels
– 𝑀 = 90 × 60 × 30 = 10" bixels

• Use forward model to calculate a joint cost 
function with a dose and a variance term.
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Dose and variance optimization

STEP I
• Forward model for variance and dose

STEP II
• Bixel-wise optimization

STEP III
• Pencil beam optimization
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Bixel-wise optimization
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variance prescription
Vpresc = 5 · 10-4

dose minimization
Dpresc = 0 mGy

dose penalty piD variance penalty piV

Prescriptions

Forward model

Penalties

unit variance projections
viɑj

unit dose projections
diɑj

ROI and OARs

variance matrix
Vij

dose matrix
Dij

Monte Carlo simulation



Bixel-wise optimization
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Bixel-wise optimization
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Intel Core i7@3.6GHz



Dose and variance optimization

STEP I
• Forward model for variance and dose

STEP II
• Bixel-wise optimization

STEP III
• Pencil beam optimization
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Pencil beam optimization

• Exactly like the 𝐷!# matrix, generate an 𝐹!# matrix from 
distance-driven binned proton numbers of a unit fluence 
scan.

• For the optimized weights 𝑤#, generate modulated fluence 
projections 𝐹!"

• Fit fluence projections 𝐹!" with an analytical pencil beam 
model to get pencil beam weights 𝑢$ such that

𝐹!" = ;
$%&

'

𝑃!$ ( 𝑢$
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Dickmann et al. (2020), PMB, in press
Dickmann et al. (2019), PMB, 64, 14



Dose and variance optimization

STEP I
• Forward model for variance and dose

STEP II
• Bixel-wise optimization

STEP III
• Pencil beam optimization
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Results
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• Variance normalized to 95th

percentile value (peak variance) 
inside the entire phantom

• Constant variance inside the ROI
• Steep increase of variance outside 

the ROI
• High dose inside the ROI



Results
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Results
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• Dose reduction of 33% over the 
whole phantom.



Conclusions

Fluence-modulated proton CT (FMpCT) can reduce imaging 
dose.

The optimization algorithm accounts both for dose and 
variance at the same time.

First optimization on bixels, then with pencil beams.

Organs-at-risk can receive an additional dose saving at the 
cost of increased dose elsewhere.
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