

Joint dose minimization and variance optimization for fluence-modulated proton CT

J. Dickmann¹ F. Kamp² S. Corradini² M. Hillbrand³ C. Belka² R. W. Schulte⁴ K. Parodi¹ G. Dedes^{1★} & G. Landry^{21★}

¹Ludwig-Maximilians-Universität München ²University Hospital LMU Munich ³Kantonsspital Graubünden ⁴Loma Linda University

*equal contribution

Loma Linda, CA

July 21, 2020

Fluence-modulated proton CT (FMpCT)

Aim: to use **modulated pencil beams for** achieving arbitrary **image noise targets** with FMpCT.

- Only focus on variance and only indirect handle for dose
- Include dose in optimization to further improve results

Dedes et al. (2017), PMB, 62, 6026

Low

Low

Fluence-modulated proton CT (FMpCT)

Variance reconstruction

Standard reconstruction

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Johnson et al. (2016), IEEE, 63, 1

Bashkirov et al. (2016), Med. Phys., 43, 2

200 MeV

LINU

Rear tracker binning

Distance-driven binning

Distance-driven binning

S. Rit et al. (2013), Med. Phys., 40, 3

Key information: WEPL and variance information is available at any distance between the two trackers!

Distance-driven binning

Distance-driven binning

Rear-tracker binning

Distance-driven binning

S. Rit et al. (2013), Med. Phys., 40, 3

Dose and variance optimization

STEP I

• Forward model for variance and dose

STEP III

Pencil beam optimization

Dose and variance optimization

STEP I

• Forward model for variance and dose

STEP II

• Bixel-wise optimization

STEP III

• Pencil beam optimization

 Assume fluence can be modulated in small bixels each associated with a weight w_i

- Formulate problem as matrix multiplication $D_i = \sum_{j=1}^{M} D_{ij} \cdot w_j$
- More difficult for variance

$$V_i = c \cdot \sum_{j=1}^M V_{ij} \cdot \frac{1}{w_j} = c \cdot \sum_{j=1}^M V_{ij} \cdot \widetilde{w}_j$$

• Because of the inverse dependence, a simple treatment planning approach is not feasible.

Forward model: Dose

- From a Monte Carlo simulation we can get the dose $d_i^{\alpha_j}$ in voxel *i* at rotation angle α_j for uniform fluence corresponding to $w_j = 1$.
- The dose matrix then is

 $D_{ij} = \frac{d_i^{\alpha_j}}{i} \cdot \delta_{ij}$ where δ_{ij} is non-zero "if voxel i corresponds to weight w_j ".

• A simple implementation could be

$$\delta_{ij} = \begin{cases} 1 & \text{if } x_i \cos \alpha_j + y_i \sin \alpha_j \approx \xi_j \\ 0 & \text{else} \end{cases}$$

• In fact we perform a linear interpolation between neighboring weights.

Forward model: variance

- Variance is proportional to the inverse weights $\widetilde{W} = \frac{1}{W}$.
- From a Monte Carlo simulation we can get the variance $v_i^{\alpha_j}$ in voxel *i* at rotation angle α_j for uniform fluence by rotating the distance-driven variance projection.
- The variance matrix then is $V_{ij} = v_i^{\alpha_j} \cdot \delta_{ij}$

where δ_{ij} is defined as for the dose.

• The additional constant is $c = f_{\text{interp}} \cdot \frac{(\pi \Delta \xi)^2}{N_P^2}$, which gives

$$V_i = f_{\text{interp}} \cdot \frac{(\pi \Delta \xi)^2}{N_P^2} \sum_{j=1}^M v_i^{\alpha_j} \cdot \delta_{ij} \cdot \frac{1}{w_j}$$

• This is equal to variance reconstruction without filter.

Forward model

- Implement forward model as a fast sparse matrix multiplication using Eigen3
 - $N = 60 \times 60 \times 30 = 10^5$ voxels
 - $M = 90 \times 60 \times 30 = 10^5$ bixels
- Use forward model to calculate a joint cost function with a dose and a variance term.

LUDWIG-MAXIMILIANS-UNIVERSITÄT

Dose and variance optimization

STEP I

• Forward model for variance and dose

• Pencil beam optimization

Bixel-wise optimization

Jannis Dickmann

Bixel-wise optimization

LUDWIG-MAXIMILIANS-UNIVERSITÄT

Bixel-wise optimization MAXIMILIANS-UNIVERSITÄT

LUDWIG-

MÜNCHEN

Dose and variance optimization

STEP I

• Forward model for variance and dose

STEP II

• Bixel-wise optimization

STEP III

Pencil beam optimization

- Exactly like the D_{ij} matrix, generate an F_{ij} matrix from distance-driven binned proton numbers of a unit fluence scan.
- For the optimized weights w_j , generate modulated fluence projections F_i^{α}
- Fit fluence projections F_i^{α} with an analytical pencil beam model to get pencil beam weights u_k such that

$$F_i^{\alpha} = \sum_{k=1}^Q P_{ik} \cdot u_k$$

Dickmann et al. (2020), PMB, in press Dickmann et al. (2019), PMB, 64, 14

Dose and variance optimization

STEP I

• Forward model for variance and dose

STEP III

Pencil beam optimization

(a) unit fluence

C/W = 1.0/0.4

 $C/W = (5/10) \times 10^{-4}$

1.25

position / mm

RSP variance

dose / mGy

fluence sinogram

0.00

(b) OAR-Boost 10x C/W = 1.0/0.4

C/W = 1.0/0.4

1.25

2.50

50

0.00

-100

 $C/W = (5/10) \times 10^{-4}$

position / mm

 $C/W = (5/10) \times 10^{-4}$

1.25

2.50

0.00

-50 0 position / mm (d) unit Fluence (e) OAR-Boost 10x

C/W = 1.0/0.4

 $C/W = (10/20) \times 10^{-4}$

1.25

0

position / mm

2.50

100 -100

0.00

C/W = 1.0/0.4

 $C/W = (10/20) \times 10^{-4}$

1.25

position / mm

2.50

00

100

Variance normalized to 95th ٠ percentile value (peak variance) inside the entire phantom

- Constant variance inside the ROI ٠
- Steep increase of variance outside ٠ the ROI
- High dose inside the ROI ٠

July 21, 2020

-50 0 50

(a) unit fluence

C/W = 1.0/0.4

 $C/W = (5/10) \times 10^{-4}$

1.25

0

2.50

50

0.00

RSP variance

dose / mGy

fluence sinogram

0.00

(b) OAR-Boost 10x

 $C/W = (5/10) \times 10^{-4}$

1.25

-50 0

position / mm

2.50

50

0.00

-50

1.25

0

position / mm

 $C/W = (10/20) \times 10^{-4}$

2.50

50

0.00

C/W = 1.0/0.4

(d) unit Fluence

 $C/W = (10/20) \times 10^{-4}$

(e) OAR-Boost 10x

C/W = 1.0/0.4

- 300 - 200 - 200 - 100 - 100 - 100 - 0 100 0

-100 0 100 -100 position / mm position / mm

-- unit fluence dose whole phantom dose inside ROI dose outside ROI dose

-50 position / mm

• Dose reduction of 33% over the whole phantom.

Fluence-modulated proton CT (FMpCT) can **reduce imaging dose**.

The optimization algorithm accounts both for **dose and variance** at the same time.

First optimization on **bixels**, then with **pencil beams**.

Organs-at-risk can receive an additional dose saving at the cost of increased dose elsewhere.

Acknowledgments

Aaron Schulz Hubertus Drosten

Collaborators and co-authors

Northern Illinoi University	s CHICAGO PROTON CENTER	ProtonVDA TRANSFORMING PROTON THERAPY	iba	CREATIS UNIVERSITÉ UNIVERSITÉ DE LYON	LOMA LINDA UNIVERSITY	UNIVERSITY OF CALIFORNIA SANTA CRUZ
Christina Sarosie George Coutrako	k Mark Pankuch n	Fritz DeJongh Ethan DeJongh Victor Rykalin	Nick Detrich	Simon Rit Nils Krah	Vladimir Bashkirov Valentina Giacometti	Robert Johnson
Funding sou	irces					
DFG	Deutsche Forschungsgemeinschaf	~~~~	BaCa		DE COOPÉRATION ANCO-BAVAROIS BAYERISCH-FRANZÖSISCH HOCHSCHULZENTRUM	EST<u>RO</u>

Thank you for your attention!

jannis.dickmann@lmu.de

linkedin.com/in/jannisdickmann/

lannis Dickmann

