GPU-accelerated Monte Carlo code FRED for clinical applications in proton therapy

Jan Gajewski, M. Garbacz, J. Baran, M. Rydygier, N. Mojżeszek, K. Czerska K. Krzempek, P. Stasica, A. Skrzypek, R. Kopeć, Antoni Rucinski

M. Pawlik-Niedźwiecka, Sz. Niedźwiecki, G. Korcyl

V. Patera, A. Schiavi

C. Chang, L. Lin

E. Scifoni, F. Tommasino

U))

AGH

Krakow PBT facility (Cyclotron Centre Bronowice - CCB)

- IBA Proteus C-235
- Clinical operation from Oct 2016
- 2 x gantry (>300 H&N patients treated)
- Eye treatment room
- Experimental hall

Monte Carlo tool needed for QA and research

In 2017 Antoni Runiński came from Rome and brought

GPU-accelerated MC Fast paRticle thErapy Dose evaluator FRED (A. Schiavi, V. Patera - Rome Uni.)

EMORY (Varian)

EMORY | WINSH CANCI INSTITU

Outline

- Pencil Beam Model parameterization
- Specific beam models:
 - \circ $\,$ CCB, Krakow, Poland IBA $\,$
 - EMORY, Atlanta, GA, U.S. Varian
 - \circ $\,$ MAASTRO, Maastricht, the Netherlands Mevion
- Beam model validation
- Patient plan simulations
- FRED performance
- LET validation

Maastro

CCB (IBA) & EMORY (Varian)

MAASTRO (Mevion)

Beam model depends on the design

Step 1: Characterise lateral beam propagation

Parameters describing the lateral propagation: $\varepsilon_{x/y}, \alpha_{x/y}, \beta_{x/y}$ $\sigma^2(z) = \epsilon \cdot \left(\beta - 2 \cdot \alpha \cdot z + \frac{1+\alpha^2}{\beta} \cdot z^2\right)$ or simplified: $S_{x/y}, VSD_{x/y}$ $\sigma(z) = S \cdot z + VSD$

BP meas.

Mono. field meas.

2 x parameters describing the initial energy and energy spread 1 parameter describing the scaling factor (protons/MU)

Step 3: Characterise Range Shifters and Apertures

Facility specific model parameters in MC

	CCB (IBA)	EMORY (Varian)	MAASTRO (Mevion)	
Energy [MeV]	70-226 (10 MeV step)	70-242 (10 MeV step)	230 (only pristine energy)	
Spot size at iso. [mm]	2.5-6.6	3.5 - 5.6	4.3 (only pristine energy)	
Lateral propagation	Emittance (2x3 params)	VPS (2x2 params)	Emittance (2x3 params)	
Range Shifter [cm]	36.7	20 / 30 / 50	19 RSs of various thick.	
Snaut extension [cm]	fixed: 36.9 cm	extendable: 5-50 cm	extendable: 3.6-33.6 cm	
Dosimetry technique	Markus (PTW) at 2 cm	PPC-40 (IBA) at 2 cm	PPC-05 (IBA) at ¼ BP range	
Aperture	No	No	2x7 leaves movable	
			Gajewski et al. A GPU Monte Carlo to support clinica	

Gajewski et al. Commissioning of GPU-accelerated Monte Carlo code FRED for clinical applications in proton therapy, sub. to Frontiers in Physics

routinein a compact spot scanning proton therapysystem, sub. to Frontiers in Physics

Beam model - lateral propagation

MAASTRO (Maastricht)

CCB (Krakow)

EMORY (Atlanta)

Emittance/VPS models fit to measurements data ${<}0.05$ mm

Beam model - Bragg peak in water

Bragg Peak range and FWHM agree within 0.1 mm (IC acceptance correction needed)

Beam model - Adaptive Aperture (MAASTRO)

• Made of Ni

- consists of 14 movable leaves of complex geometry
- Implemented using 60 cuboid regions based on technical drawings

Validation - Range Shifters

EMORY: 3 x RS (20/30/50 mm)

CCB: single RS

MAASTRO: 19 x RS (1.6 - 58 mm)

BP range behind Range Shifters agree with the measurements < 0.1 mm

Validation - spot size in air

CCB (Krakow)

EMORY (Atlanta)

Lynx meas.

Validation - spot size in water/solid

CCB (Krakow)

EMORY (Atlanta)

MAASTRO (Maastricht)

The spot size in water/solid phantoms within ± 0.6 mm

Validation - SOBP

CCB: 5 x SOBP without RS

EMORY: 4 x SOBP Various RS and Snaut Position

MAASTRO: 3 x SOBP Adaptive Aperture included

Relative dose difference < 2%

Validation - patient QA

CCB+EMORY: 1077+52 meas.

Gamma index pass rate (2%/2 mm/2%) over 95%

MAASTRO: ~600 meas.

Validation - heterogeneous media (CCB)

Mono. layers: 100/150/200 MeV (nRS/RS) \Rightarrow 6 plans

MatriXX detector in water ↓ **3D dose maps** (pixel 5x7.6x7.6 mm³) **3D GI pass rate** (2%/2 mm/2%) >99%

Time performance of FRED MC engine

Simulation	prim./PB	Voxel size	time	Tracking rate
Single PB	10^{8}	1 mm^3	36 - 53 s	up to 10^7 prim./s
SOBP 0.51	10^{5}	1 mm^3	$< 10 \min$	up to $5 \mathrm{x} 10^6$ prim./s
Patient QA in water	10^{5}	1 mm^3	mean 2'35 min	mean 3.4x10 ⁶ prim./s
Patient plan in CT	10^{4}	$1.5\mathrm{x}1.5\mathrm{x}1.5~\mathrm{mm}^3$	21s - 6'26 min	mean 2.9x10 ⁶ prim./s

Automatic (no user activity required) beam model computation (303 simulations for CCB) in ~10h, including:

- characterisation of the beam lateral propagation
- the energy and energy spread optimisation
- optimisation of the scaling factor with monoenergetic 10x10 layers

Patient simulations (MAASTRO)

- Nozzle overlapping with the CT
- MC-based TPS but in rescalled CT

-180

Patient simulations (EMORY)

- Nozzle overlapping with the CT
- MC-based TPS but in rescalled CT

Patient simulations (CCB)

- Analytical TPS
- Analysis of 122 treatment plans
- Two papers in preparation by Magdalena Garbacz → next talk

Dose-averaged LET

Patient simulations (CCB)

Experimental validation of LET spectra

∧ DVACAM Imaging the Unseen

MiniPix TimePix detector (Advacam, Prague, Czech Republic)

Pixelated silicon sensor $300 \ \mu m$ thick

TimePix detector waterproof holder

Water phantom with 3D motors

• Single pencil beams in air/water

- 100, 150 and 200 MeV
- With and without RS
- Up to 15 cm off the beam core
- ~ 300 meas. points

Stasica et al. A simple approach for experimental characterization and validation of proton pencil beam profiles, sub. to Frontiers in Physics

LET spectra (preliminary)

- Automated beam model commissioning \rightarrow prepare/adapt the beam model over night
- Validation against measurements \rightarrow within clinical acceptance criteria
- **FRED** performance \rightarrow patient dose simulations in minutes (high statistics)
- LETd scoring and variable RBE models implemented \rightarrow treatment planning study
- LET spectra measurements \rightarrow input to biologically-weighted dose optimization