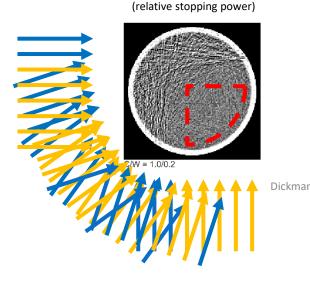
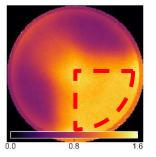

Prescribing image noise using dynamic fluence field optimization experimental results using the pre-clinical proton CT phase-II scanner

J. Dickmann¹ C. Sarosiek² V. Rykalin³⁴ M. Pankuch⁴ S. Rit⁵ N. Detrich⁴⁶ G. Coutrakon² R. P. Johnson⁷ R. W. Schulte⁸ K. Parodi¹ G. Landry^{91*} & <u>G. Dedes</u>^{1*}

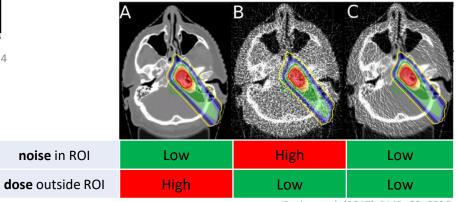
> ¹Ludwig-Maximilians-Universität München ²Northern Illinois University ³ProtonVDA Inc. ⁴NM Chicago Proton Center ⁵Université de Lyon ⁶IBA SA ⁷UC Santa Cruz ⁸Loma Linda University ⁹LMU Klinikum

> > * Equally contributing senior authors

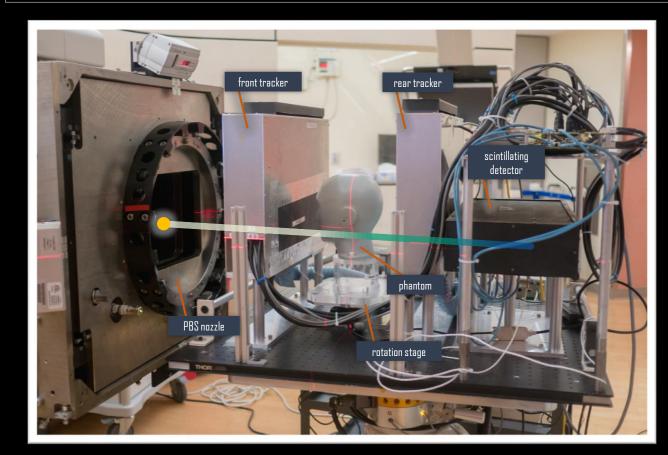

6th Loma Linda (virtual) workshop July 2020



Aim: to show experimental feasibility of achieving arbitrary image noise targets with FMpCT.


RSP

Dose / mGy


Dickmann et al. (2020), Med. Phys., 47, 4

Motivation: frequent imaging for particle therapy


Dedes et al. (2017), PMB, 62, 6026

Proton computed tomography

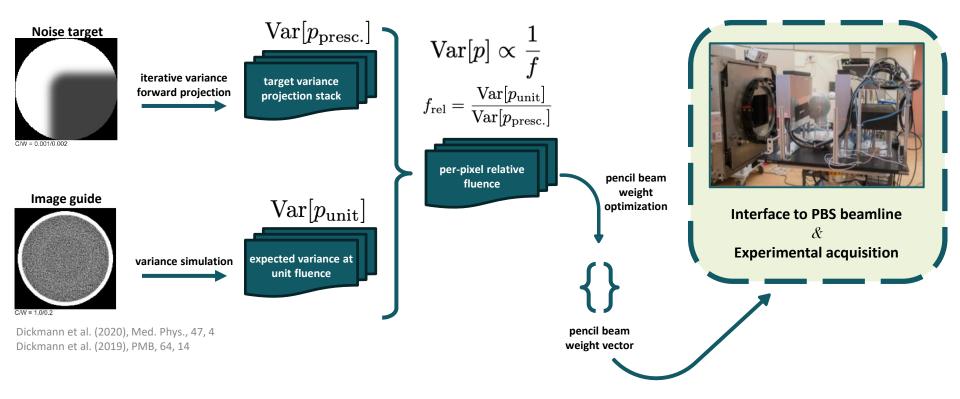
Johnson et al. (2016), IEEE, 63, 1

Bashkirov et al. (2016), Med. Phys., 43, 2

LMU

0 MeV

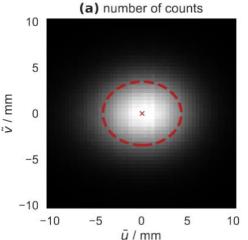
- Relative stopping power (RSP) reconstruction:
 - Based on registered WEPLs: WEPL = \int_{L} RSPdl
 - Filtered backprojection along curved proton paths


• WEPL variance in a projection:
$$\sigma_{p_{\gamma_n}}^2(j\Delta\xi, k\Delta\eta) = \frac{\sigma_{E_{out},\gamma_n}^2(j\Delta\xi, k\Delta\eta)}{N_{\gamma_n}(j\Delta\xi, k\Delta\eta) \cdot S_W^2(\overline{E}_{out,\gamma_n}(j\Delta\xi, k\Delta\eta))}$$
.
• RSP variance reconstruction: Var $[f(x_p, y_p)] = f_{interp,\mu} \left(\frac{\pi}{N_p}\Delta\xi\right)^2 \sum_{n=1}^{N_p} V_{\gamma_n}(j\Delta\xi)$

with $V_{\nu n}$ being the variance in a pixel in the projection

Rit S et. al. (2013), Med Phys, 40(3):031103 Rädler et al. (2018), PMB, 63(21):215009

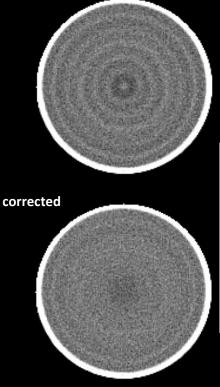
Fluence field optimization



Proton therapy facility

- Northwestern Medicine Chicago Proton Center
- PROTEUS[®]PLUS IBA Cyclotron
- Full Pencil Beam (PB) scanning capability
- Used **fixed** beamline room in "research" mode
- 1.3 nA, 8.6 and 6.9 mm FWHM, variable dwell time

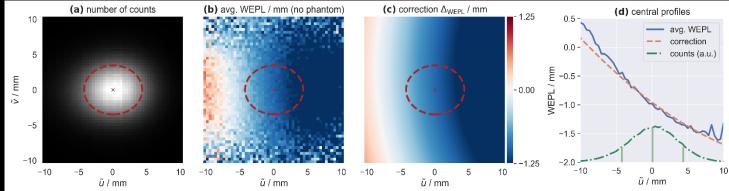
- Water phantom in polystyrene container
- CTP404 module of the Catphan[®]600 phantom (RSP: 0.883 1.79)
- Pediatric (5-year old) head phantom



Noise prescription

- Unit fluence scans with pencil beam weights set to 1
- Constant noise scans with V_{ROI} noise everywhere the image (in general pCT noise is not constant for unit fluence)
- A ROI imaging task (FMpCT) with V_{ROI} in a quadrant of the image
- V_{ROI} prescriptions:
 - Water phantom: 4.6×10⁻⁴
 - CTP404 phantom: 5.9×10⁻⁴
 - Head phantom: 12.0×10⁻⁴
- The exact value of V_{ROI} is the peak variance at unit fluence for each phantom

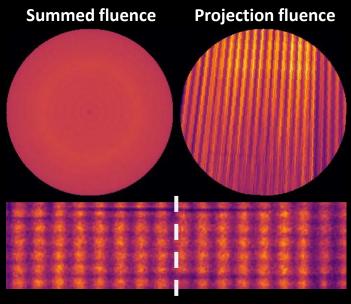
Pencil beam energy correction MAXIMILIANS-UNIVERSITÄT


C/W = 1.0/0.2

LUDWIG-

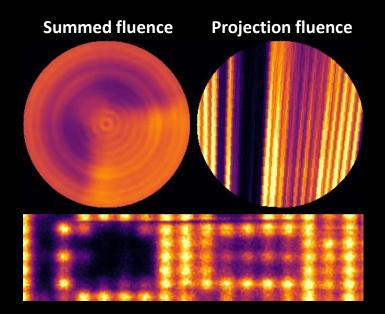
MÜNCHEN

uncorrected


- Analysis revealed an intra-PB spatially varying energy • distribution
- **Correction** based on data without phantom

Fluence delivery

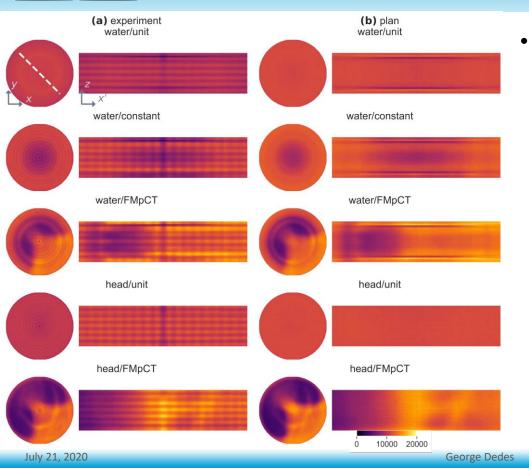
- To reduce the degrees of freedom in the optimization, pencil beams
 - had a larger interspace
 - were offset by a quarter of the interspace
- With a 360-degree acquisition, summed fluence was homogeneous.



rotation axis

Fluence delivery

- To reduce the degrees of freedom in the optimization, pencil beams
 - had a larger interspace
 - were offset by a quarter of the interspace
- With a 360-degree acquisition, summed fluence was homogeneous.
- Very sensitive to misalignments: will not be used in future acquisitions.



Fluence delivery

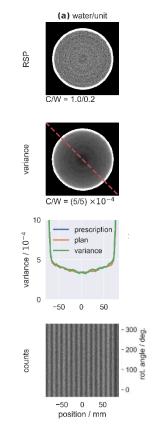
- To reduce the degrees of freedom in the optimization, pencil beams
 - had a larger interspace
 - were offset by a quarter of the interspace
- With a 360-degree acquisition, summed fluence was homogeneous.
- Very sensitive to misalignments: will not be used in future acquisitions.

Experimental results: water phantom MAXIMILIANS-UNIVERSITÄT

LUDWIG-

MÜNCHEN

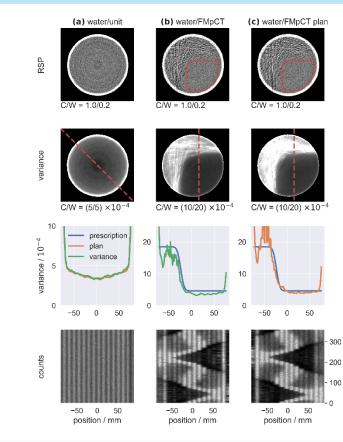
LMU


- Example of the effect of differences between planned and delivered beams
 - Misalignment —

(rings in fluence and variance)

Smaller beam size

Experimental results: water phantom

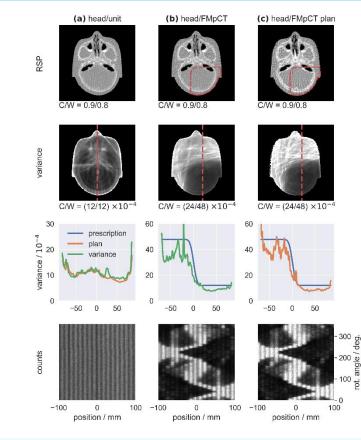


• Unit fluence: **variance reduced** in the center of the phantom

Experimental results: water phantom MAXIMILIANS-UNIVERSITÄT

deg.

angle

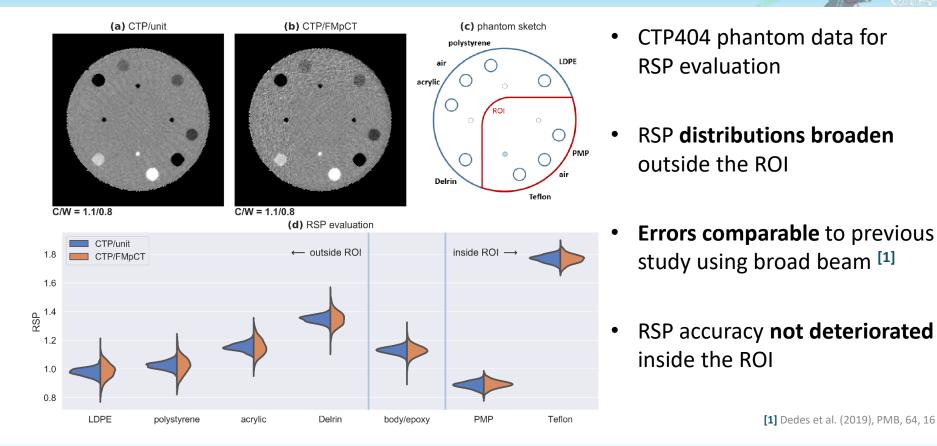


- Unit fluence: variance reduced in the ٠ center of the phantom
- Good agreement of **FMpCT acquisition**
 - with noise prescription
 - with Monte Carlo plan
- **Dose reduction** outside of ROI 41%

LUDWIG-

MÜNCHEN

Experimental results: head phantom LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



- Good agreement also on pediatric head • phantom
- **Dose reduction** outside of ROI up to 40% ٠

LMU

deg

LUDWIG-MAXIMILIANS-UNIVERSITĂT WÜNCHEN

George Dedes

Experimental results: RSP accuracy

		uncorrected error in %		corrected error in %		error in %
Insert	RSP	unit	FMpCT	unit	FMpCT	Dedes (2019) ^[1]
inside ROI						
PMP	0.883	0.18 ± 0.31	0.79 ± 0.36	0.51 ± 0.31	1.06 ± 0.35	1.08 ± 0.11
Teflon	1.790	-1.31 ± 0.18	-1.49 ± 0.21	-1.16 ± 0.17	-1.32 ± 0.21	-1.31 ± 0.05
outside ROI						
LDPE	0.979	-0.33 ± 0.32	0.24 ± 0.64	-0.12 ± 0.31	0.52 ± 0.65	-0.49 ± 0.11
polystyrene	1.024	-0.12 ± 0.30	-0.25 ± 0.66	0.06 ± 0.29	-0.11 ± 0.67	-0.04 ± 0.10
body/epoxy	1.144	-1.39 ± 0.02	-1.66 ± 0.03	-1.20 ± 0.02	-1.54 ± 0.03	—
acrylic	1.160	-0.80 ± 0.27	-0.80 ± 0.57	-0.54 ± 0.27	-0.63 ± 0.57	-0.30 ± 0.07
Delrin	1.359	-0.93 ± 0.21	-1.02 ± 0.45	-0.78 ± 0.21	-0.83 ± 0.45	-1.32 ± 0.21
MAPE-ALL		0.72 ± 0.09	0.89 ± 0.18	0.63 ± 0.09	0.86 ± 0.18	0.76 ± 0.05
MAPE-ROI		0.74 ± 0.18	1.14 ± 0.21	0.84 ± 0.18	1.19 ± 0.21	1.20 ± 0.06

- FMpCT and full fluence pCT: same RSP accuracy within the uncertainty margin
- **RSP accuracy (<1%) comparable** to previous study using broad beam

Fluence-modulated proton CT (FMpCT) can deliver **image noise prescriptions** in experiments.

Acquisition with pencil beams requires an energy correction.

Despite minor misalignments **agreement to Monte Carlo plans** was satisfactory.

No relevant deterioration of RSP accuracy.

Experimental realization of dynamic fluence field optimization for proton computed tomography

J Dickmann¹, C Sarosiek², V Rykalin^{3,4}, M Pankuch³, S Rit⁵, N Detrich^{3,6}, G Coutrakon², R P Johnson⁷, R W Schulte⁸, K Parodi¹, G Landry^{9,1,10,*}, and G Dedes^{1,*}

¹ Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), 85748 Garching bei München, Germany
² Department of Physics, Northern Illinois University, DeKalb, IL 60115, United States of America

 3 Northwestern Medicine Chicago Proton Center, Warrenville, IL 60555, United States of America

⁴ ProtonVDA Inc., Naperville, IL 60563, United States of America

⁵ Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373, Lyon, France

⁶ Ion Beam Applications SA, 1348 Louvain-La-Neuve, Belgium

⁷ Department of Physics, U.C. Santa Cruz, Santa Cruz, CA 95064, United States of America

 8 Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92354, United States of America

⁹ Department of Radiation Oncology, University Hospital, LMU Munich,

81377 Munich, Germany

LUDWIG-MAXIMILIANS-UNIVERSITÄT

MÜNCHEN

¹⁰ German Cancer Consortium (DKTK), 81377 Munich, Germany

* Senior authorship is shared equally.

E-mail: g.dedes@physik.uni-muenchen.de

Acknowledgments

Claus Belka Florian Kamp Hubertus Drosten Aaron Schulz

Collaborators and co-authors

Thank you for your attention!

