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ADAPTIVE PROTON THERAPY
• Intensity-modulated proton therapy 

(IMPT) can spare more organs at risk 
than IMRT for head and neck 
patients1. 

• Anatomical changes and set-up 
variations can severely impair 
treatment quality.2 

• Solution: Adaptive proton therapy 
(APT).

2 Stützer, Kristin, et al. "Potential proton and photon dose degradation in advanced 
head and neck cancer patients by intratherapy changes." Journal of applied clinical 
medical physics 18.6 (2017): 104-113. 

1 Barten, Danique LJ, et al. "Comparison of organ-at-risk sparing and plan robustness for 
spot-scanning proton therapy and volumetric modulated arc photon therapy in head-
and-neck cancer." Med. Phys. 42.11 (2015): 6589-6598.

IMRT IMPT

Pl
an

in
g 

CT
Ve

rifi
ca

tio
n 

CT



3

CBCT IMAGING
• Daily volumetric imaging is needed for online APT. 

• Cone-beam CT (CBCT) is readily available in several 
proton therapy centers



4

CBCT IMAGING
• Daily volumetric imaging is needed for online APT 

• Cone-beam CT (CBCT) is readily available in several 
proton therapy centers 

• X-ray scatter in patient anatomy generates artifacts in 
CBCT projections



5

CBCT IMAGING

Scatter free

Uncorrected
• Daily volumetric imaging is needed for online APT 

• Cone-beam CT (CBCT) is readily available in several 
proton therapy centers 

• X-ray scatter in patient anatomy generates artifacts in 
CBCT projections 

• Scatter artifacts severely affect image quality and make 
accurate proton dose calculation impossible 
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SCATTER CORRECTION
Scatter rejection Scatter subtraction
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SCATTER SUBTRACTION
• Monte Carlo (MC) simulations have been shown to be the most accurate scatter 

subtraction approach. 

• Too computationally demanding for real-time usage in APT.1 

• Recent work have shown that scatter estimation can be substantially accelerated using 
deep convolutional neural networks.2,3

2 Hansen, David C., et al. "ScatterNet: A convolutional neural network for cone-beam CT intensity correction." Medical physics 45.11 (2018): 
4916-4926.

3 Maier, Joscha, et al. "Deep scatter estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural 
network." Journal of Nondestructive Evaluation 37.3 (2018): 57.

1 Rührnschopf and, E. P., & Klingenbeck, K. (2011). A general framework and review of scatter correction methods in cone beam CT. Part 2: scatter estimation 
approaches. Medical physics, 38(9), 5186-5199.
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(SOME) RECENT WORK
• Hansen et al. (Med. Phys 2018): Projection-based correction using a U-Net trained on 

empirically corrected data. 

• Tested on pelvis patients: High accuracy for VMAT dose calculation, limited accuracy for 
IMPT.  

• Kurz et al. (PMB 2019): Image-based correction using a Cycle-GAN trained on empirically 
corrected data. 

• Tested on pelvis patients: High accuracy for VMAT dose calculation, limited accuracy for 
IMPT. 

• Maier et al. (Med. Phys. 2019): Projection-based correction using a U-Net trained on Monte 
Carlo data 

• High HU accuracy on simulated and phantom images, no dose calculation performed.
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PURPOSE

The purpose of this work is to evaluate the performance of a deep convolutional 
neural network trained on Monte Carlo data to provide fast and accurate CBCT 

scatter-correction in the context of head and neck adaptive proton therapy.
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U-NET ARCHITECTURE
• We used a U-Shape deep 

convolutional neural 
network (U-net)1 made of 
7 layers with 16 to 1024 
feature channels2. 

• Input projections are 
downsampled to  
256 x 256.  

• The Unet is trained for 
150 epochs.
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128x128 - 32 channels 

64x64 - 64 channels 

32x32 - 128 channels 

16x16 - 256 channels 

8x8 - 512 channels 

4x4 - 1024 channels 

3x3 Conv. (stride 1), PReLU 

3x3 Conv. (stride 2), PReLU Concatenation 
1x1 Conv. (stride 1), PReLU 

Bilinear upsampling

1 Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional 
networks for biomedical image segmentation." International Conference on Medical 
image computing and computer-assisted intervention. Springer, Cham, 2015.

Raw projection Scatter distribution

2 Maier, Joscha, et al. "Deep scatter estimation (DSE): Accurate real-time scatter 
estimation for X-ray CT using a deep convolutional neural network." Journal of 
Nondestructive Evaluation 37.3 (2018): 57.
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MONTE CARLO SIMULATIONS
• CBCT projections are simulated using the GPU accelerated MC code MCGPU. 

• The 100 kVp X-ray spectrum of an Elekta XVI system is modeled using the SpekCalc1 
software. 

• 48 head and neck patients, distributed in training (29), validation (9) and testing (10) sets 
are used as input geometry to simulate the CBCT projections. 

• A total total of 13,680 pairs of projections are used for training and validation.

1 Poludniowski, G., et al. "SpekCalc: a program to calculate photon spectra from 
tungsten anode x-ray tubes." Physics in Medicine & Biology 54.19 (2009): N433.
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RESULTS
• CBCTNN yields a 

substantially better 
agreement with CBCTSF 
than CBCTraw. 

• The average 
computation time per 
projection is 13.58 ms.  

• Less than 5 seconds 
for a 360 projections 
volume.

CBCTSF

CBCTraw

CBCTNN

Test 
patient #

CBCTraw 
-CBCTSF

CBCTNN 
-CBCTSF

3 4 5 6 7 8

W
=500    L=40

W
=600    L=0
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RESULTS - HU ACCURACY
• Almost perfect agreement 

between the HU values in the 
scatter corrected and scatter 
free images 

• Mean error and mean absolute 
error on HU error over all test 
patients of (-0.8, 13.4) for 
CBCTNN vs (-28.6, 69.6) for 
CBCTraw
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IMPACT OF COST FUNCTION
• HU accuracy for two different cost-functions: 

• Mean squared error (MSE): 

• Mean absolute percentage error (MAPE): 

• Best HU accuracy with MAPE.

100
N ∑

d,n

Unet(d, n, w, b) − S(d, n)
S(d, n)

1
N ∑

d,n
(Unet(d, n, w, b) − S(d, n))2
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LEARNING SCATTER MAPS VS SCATTER FREE 
PROJECTIONS

• HU accuracy for two different 
target quantities: 

• Normalized scatter: 

• Scatter free:  

• Best HU accuracy when learning 
Scatter distributions.

praw → s = S
I0

praw → pSF

praw = − ln ( I + S
I0 ) pSF = − ln ( I

I0 )
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IMPACT OF SPECTRAL ACCURACY
• Added a 2 mm Al filtration 

to the spectra used during 
training for one of the 
validation patient. 

• Some effect is observed, 
but the correction quality is 
not noticeably impaired. CBCTraw-CBCTSF

CBCTSF

CBCTNN-CBCTSF CBCTNN-CBCTSF, 2mm Al

NN
NN
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DOSE CALCULATION ACCURACY
• IMPT plans are created for the 10 test patients using 

RayStation. 

• Dose distributions calculated in CBCTSF are used as 
reference and compared to CBCTNN and CBCTraw.

2%/2mm  
Gamma pass rate

Patient # CBCTNN CBCTraw

1 99.92% 69.18%

2 100% 61.22%

3 100% 65.94%

4 94.18% 64.22%

5 100% 70.32%

6 99.56% 72.15%

7 98.21% 66.55%

8 97.57% 71.14%

9 99.47% 73.12%

10 99.96% 70.59%

Mean 98.89% 68.44%
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IMPACT OF SPECTRAL ACCURACY
• Similarly as for the HU accuracy, the spectral model used for training has some impact 

on the dose calculation accuracy. 

• Still a substantial improvement over CBCTraw

2%/2mm Passing rate
72.15% 99.56% 98.56%
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HU ACCURACY - HEAD PHANTOM
• CBCT projections of an 

anthropomorphic phantom 
containing a real human skull 
are acquired on an Elekta XVI 
system. 

• Reconstructed CBCT images 
are compared to a reference 
CT scan of the same phantom.
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RANGE PREDICTION ACCURACY
• Proton range accuracy using the 

measured CBCT images is 
evaluated in the head phantom 
using the CT image as 
reference. 

• Millimetric agreement is 
obtained between CBCTNN and 
the reference CT scan.
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EVALUATION IN PATIENT DATA
• To evaluate the performance 

of the method on real patient 
data (no ground truth) the 
prior-based method of Park et 
al. is used as reference 

• 3 patients from the test group 
are used for the comparison 
between CBCTNN and 
CBCTprior

Park, Y. K., Sharp, G. C., Phillips, J., & Winey, B. A. (2015). Proton dose calculation on scatter-corrected 
CBCT image: Feasibility study for adaptive proton therapy. Medical physics, 42(8), 4449-4459.
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EVALUATION IN PATIENT DATA
• Generally good agreement between 

our MC-based NN scatter 
correction and the prior-based 
reference method 

• Mean gamma pass rate of 78.15% 
(2%/2mm) and 98.71% (3%/3mm)
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CONCLUSION
• The trained U-net is able to provide MC equivalent scatter correction in less than 5 

seconds, 

• Optimal HU accuracy is achieved using the MAPE cost function and predicting scatter 
distributions instead of scatter free projections, 

• The model is robust against moderate spectral discrepancies between training and 
validation projections, 

• Accurate proton range prediction and IMPT dose calculation is achieved on the scatter-
corrected CBCT images, 

• The method is suitable for head and neck adaptive proton therapy.
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