INDEPENDENT COMPONENT ANALYSIS
 Dr. Keith Evan Schubert

PCA REVIEW

- Independent Gaussian variables
- Linear combinations
- Want:
- lowest dimensional basis
- Maximum information/variance
- Solution:
- Zero mean
- Take the SVD
- If variables are in the columns then
- Right singular vectors will form the correct basis
- Right singular vectors project to the basis

PCA EXAMPLE

- 2 sensors each take n data points (say x and y)
- Find principal components and rotate the data

PCA EXAMPLE CONT

- $A=[x y], \mathrm{n}=200$
$A=\left[\begin{array}{cc}-1.8499 & -0.0439 \\ 1.0413 & 1.0274 \\ -6.5603 & -3.5638 \\ \vdots & \vdots\end{array}\right]$
- $U \Sigma V^{T}=\operatorname{svd}(A)$
$V=\left[\begin{array}{cc}0.8634 & -0.5044 \\ 0.5044 & 0.8634\end{array}\right], \theta \approx 30.29^{\circ}$

PCA EXAMPLE CONT

- Plot A

- Plot $A v=U \Sigma$

SECOND PCA EXAMPLE

- Rotated sinusoid

Ploted PCA 1

Mixed

Ploted PCA 2

INDEPENDENT COMPONENTS

- Data sources are independent random variables
- Non-gaussian distributions
- Measurements are (nonlinear) sums of sources
- Want sources and mixing

HOW?

- Zero mean
- Whiten the data
- Reduce the dimension of data
 say with PCA
- Pre-conditioners
- Iterative algorithm to separate based on a cost function
- Two families:
- Minimize mutual information
- Maximize non-gaussian

MINIMIZE MUTUAL INFORMATION

- Available data
- Distributions that might fit
- Find the one that maximizes either
- Kullback-Leiber Divergence (Relative Entropy)
- $D_{K L}(P \| Q)=-\sum_{x \in X} P(x) \log \left(\frac{Q(x)}{P(x)}\right)$
- Maximum Entropy

$$
S=-\sum_{i} P_{i} \log P_{i}
$$

MAXIMIZE NONGAUSSIAN

- Kurtosis
- scaled fourth moment
- Fatness (positive) or thinness (negative) of tail
- $\operatorname{Kurt}[X]=E\left[\left(\frac{X-\mu}{\sigma}\right)^{4}\right]$
- Negentropy
- Distance to normal (Gaussian)
- Entropy of Gaussian with same mean and variance minus entropy of distribution

SLOW WALKTHROUGH

- Take x and y from independent uniform variables

SLOW WALKTHROUGH

- Mix
- How do we recover

SLOW WALKTHROUGH

- Zero mean
- Whiten

SLOW WALKTHROUGH

- Make nongaussian
- What does it look like now?

- Rotate till you get the most non-gaussian

SIMPLE ICA EXAMPLE

- Two

signals get mixed

ONE LAST EXAMPLE

- Sinusoid and
sawtooth

