

Northern Illinois University

Range Verification of xCT- and pCTbased Treatment Plans

Particle Imaging and Treatment Planning Workshop, Loma Linda University, July 2019 C. Sarosiek¹, D. Johnstone², A. Panchal³, B. Kreydick³, G. Coutrakon¹, R. Schulte⁴ 1 Northern Illinois University, 2 University of Cincinnati, 3 Northwestern Medicine Chicago Proton Center, 4 Loma Linda University

- Proton radiation therapy treatment plans are currently done on xCT images
- Errors arise due to:

Introduction

- HU-to-RSP conversion
- Streak artefacts from metallic implants
- pCT could improve treatment plans and reduce error margins around the CTV

Goal

 Determine the error in proton range in a phantom by comparing the dose distribution on a stack of radiochromic film to the dose distribution predicted by treatment plans created on an xCT and pCT image.

Phantom and Films

- Customized CIRS 715HN Pediatric Head Phantom
- EBT3 Gafchromic[®] radiochromic film
 - Stack of 36
 - Dimensions: 1.5 cm x 3 cm
 - Thickness: 0.27 mm
 - RSP: 1.27

NIL

Proton Computed Tomography

- System:
 - Low intensity protons
 - Total eight tracking planes, two x and two y both upstream and downstream
 - Five-stage scintillating energy detector
 - Rotating stage

- Preprocessing
- Filtered back projection
- Most Likely Path algorithm
- Iterative Reconstruction
- Final image is an RSP map

Treatment Planning

- Import xCT and pCT images into RayStation treatment planning system
- pCT images are registered to xCT
- Treatment plan is created and optimized on xCT
- Identical beam parameters are applied to pCT image and the dose map is calculated.
- The same beam parameters are delivered to phantom with film in place

Gamma Analysis

• Gamma is defined by:

$$\Gamma = \sqrt{\left(\frac{\% \ Dose}{3\%}\right)^2 + \left(\frac{DTA}{3\ mm}\right)^2}$$

- Gamma score is the percent of pixels with $\Gamma < 1$
- Where % Dose is the percent difference between the dose in a given pixel on one plane with a nearby pixel in a different plane and DTA is the distance to agreement.
- Note, this is a 2D analysis technique

Determination of Range Error

- Stack of film is placed normal to the incident beam
- Fall-off of SOBP is over the range of the stack

Determination of Range Error

% of pixels Г<1</pre>

- Range Error = Treatment Plan depth – film depth
- Positive value implies protons undershot the predicted range

Fields

- Two fields were tested: Vertex and AP
 - Vertex: homogenous field
 - AP: heterogenous field
- Each film dose distribution was compared to the predicted dose distribution from xCT- and pCTbased treatment plans
- Three trials for each field

Vertex xCT Results

Vertex pCT Results

AP xCT Results

Range Error: -0.044 +/- 0.028 cmRange Error: -0.035 +/- 0.034 cm Range Error: -0.004 +/- 0.034 cm Gamma Ave: 98.4 +/- 1.63 % Gamma Ave: 97.84 +/- 2.42 % Gamma Ave: 79.58 +/- 4.24 %

AP pCT Results

Range Error: 0.038 +/- 0.031 cm Range Error: 0.038 +/- 0.031 cm Range Error: 0.015 +/- 0.034 cm Gamma Ave: 83.39 +/- 3.54 % Gamma Ave: 81.66 +/- 4.1 % Gamma Ave: 73.64 +/- 6.33 %

Results Overview

Vertex		
	Range Error (cm)	Gamma Score (%)
хСТ	0.033 ± 0.023	99.07 ± 1.46
рСТ	-0.008 ± 0.024	89.57 ± 5.68
AP		
	Range Error (cm)	Gamma Score (%)
хСТ	-0.028 ± 0.019	91.94 ± 1.72
рСТ	0.030 ± 0.018	79.56 ± 2.78

Conclusions & Future Work

- Proton range prediction from pCT- and xCTbased treatment plans are accurate to within 0.5 mm for two fields
- Phantom is tissue equivalent and therefore is biased towards a correct HU-to-RSP conversion
- Future Work:
 - Irradiate an AIO field through a region with a gold dental crown in or near the treatment field

Acknowledgements

- Northwestern Medicine Chicago Proton Center: Mark Pankuch, Adit Panchal, Ming Gao
- Northern Illinois University: Mike Figora
- This work was supported by funding from Ion Beam Applications.

Thank you

Additional Slides

LET Response

LET Correction to Film

Vertex Dose verses Depth with and without LET

