

5th Annual LLU Algorithm in Particle Imaging and Treatment Planning Workshop Loma Linda, USA, July 2019

Charged particle imaging with Timepix and Timepix3 Pixel Detectors

Cristina Oancea^{1,2}, Carlos Granja¹, Jan Jakubek¹

Anna Mackova³, Vladimir Havranek³, Vaclav Olsansky³

Nuclear Physics Institute of the CAS

¹ADVACAM*, Prague, Czech Republic

² Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest, Romania ³ Nuclear Physics Institute, Czech Acad. Sci., Rez-Prague, Czech Republic

*Start-up of the Medipix Collaboration/IEAP CTU Prague

Imaging the Unseen

cristina.oancea@advacam.com

www.advacam.com

W Particle imaging with Timepix and Timepix3 detectors

Preliminary radiography experiments, methodology

Outline

- Pixel detectors
- □ Ion Radiography, imaging principle
- **D** Proton micro-beam experiments
 - Al stairs-like target
 - Grid target
- Low-energy proton beam radiography

Outlook

Measurements

Particle	Energy	Source	Sample	Detectors
Alpha	5.5 MeV	Radionuclid e lab source	- Spider - Wing of fly	Timepix 300 µm Si sensor
Proton	3 MeV	Tandetron	- Al foils stairs - Metal grid	AdvaPix Timepix3 300 µm Si sensor
Proton	20, 30 MeV	Cyclotron	- Foils - PCB - Plastic mask	AdvaPix Timepix3 500 µm Si sensor

Ion Radiography with energy sensitive pixel detectors Motivation

- Ion imaging can improve particle therapy, reduce uncertainties, ...
- Hybrid semiconductor pixel detectors Timepix, Timepix3
 - High spatial granularity (pixel pitch 55 $\mu m)$ + particle track analysis \rightarrow sub-pixel/ μm scale resolution
 - Quantum imaging sensitivity ightarrow Low doses needed
 - Per-pixel spectrometry \rightarrow High-contrast imaging
 - Multi-parameter image generation for single particles
 - Energy deposition
 - Dose
 - Particle Tracking, LET, direction for energetic charged particles

- Imaging of soft-tissue and low-contrast objects
- Lower doses, small/thin objects

Mybrid Semiconductor Pixel Detectors

Timepix3 ASIC

Fast pixel detectors

- AdvaPIX TimePIX3
- Si, CdTe, CZT sensors Fast camera Single chip

256x256 pixels 14x14 mm

Pattern recognition analysis of single particle tracks

- Particle direction tracking in 3D
- Wide Field of View (2π), no collimators
- Fast data acquisition (ns)
- Records simultaneously Time of arrival (TOA) and Energy deposited (TOT) by individual tracks
- Energy of all charged particles starting from few keV up to highly energetic particles.

WidePIX L

210x30 mm

2x15 = 30 chips

3840x512 pixels

Large area imagers

Features:

- Pixel size of **55 μm**
- 1.6 Mega pixels
- Sensitive area
- (can be larger if needed)
- Gap-less tilling

MiniPIX TimePIX3 Si or CZT sensors

Miniaturized camera TPX3

256x256 pixels 14x14 mm

Ion Radiography with pixel detectors Timepix

Per-pixel energy sensitivity

Imaging principle

- □ Instead of registering the intensity of the transmitted beam, we measure changes in the energy of single particles → imaging contrast from energy loss changes sensitive to sample density
- A single particle is sufficient in each imaging spatial bin
- □ Mono-energetic charged particle beams \rightarrow imaging + inspection of thin samples (thin layers, foils).
- Precision of thickness measurement can reach sub-pixel / μm-scale.

J. Jakubek, et al., Pixel Detectors for Imaging with Heavy Charged Particles, Nucl. Instr. and Meth. A 591 (2008) 155-158

<u>A D V A C A M</u>

Imaging the Unseen

Radiography of thin Mylar foils

Table top setup, measurement in air, Timepix 300 um Si

Energy spectrum of alpha particles from 241 Am passing through a sample composed of 8 overlapping mylar foils of 4 μ m(inset).

Ion Radiography with pixel detectors Timepix Detection of heavy charged particles with Timepix \rightarrow spectrometry, track visualization 3 MeV protons, Tandetron accelerator **Pixel cluster analysis** AdvaPix-TPX3 C06 300 um Si, p μ -beam. Tandetron, 8 Jan 2019. Carlos, Cristina, ADV/Praque AdvaPix-TPX3 C06 300 um Si, p µ-beam, Tandetron, 8 Jan 2019, Carlos, Cristina, ADV/Pragi Three protons 135 **Pixelated cluster tracks** 130 5y10 10 100 Ε Y position (px 125 130 X position [px] X-position [pixel] **3D** visualization

2D visualization

Nuclear Physics Institute of the CAS 5th Annual LLU Workshop July 2019 Loma Linda USA public research institution

Ion Radiography with Timepix detector

Table top setup and radionuclide lab source

Timepix detector Si sensor

Helium radiograph

- **Centroid** to increase spatial resolution (sub-pixel $\rightarrow \mu$ m-scale resolution)

- 750 000 clusters analyzed
- Not enough particles for "deep" sub-pixelization

Soft tissue sample: Dry spider

J. Jakubek, et al., Pixel Detectors for Imaging with Heavy Charged Particles, Nucl. Instr. and Meth. A 591 (2008) 155-158

⁴He, 5.5 MeV measured in vacuum

Spider radiograph obtained by measurement of energy losses of 5.5 MeV alpha particles.

The image looks dotted because only 720,000 alpha particles were used for 1 megapixel image.

~0.7 particles per pixel

~ 12 particles per pixel, 65 kpixel image

N Proton Radiography: Cluster area

Imaging the Unseen

Nuclear Physics Institute of the CAS Imaging the Unseen

3 MeV Proton beam Proton beam, 3 MeV, Tandetron NPI Rez AdvaPix Timepix3, 300 µm Si sensor Al foils Scanned area: 30 µm 5 10 µm 3 mm x 11 mm ц hm 20 Cluster Area[px] 250 **Cluster size distribution** 200 **Cluster size distribution** 2.5e+05 X-position [pixel] 150 2e+05 G 1.5e+05 1e+05 50000 100 dis TPX3 20 30 Size [pixels] 50 0 10 Sample μm 20 30**A D V A C A M** 250 20 200 150 100

[lexid] notition [pixel]

60

70

Size All
Size OK

Proton Radiography: Cluster energy

11

Timepix 3, Si sensor 300 μm Proton beam, 3 MeV, Tandetron

Spatial map of cluster Energy

<u>A D V A C A M</u>

Imaging the Unseen

Spatial resolution: Image pixel size Sample: Al foil stairs

3000

Applications: Proton Radiography

Timepix 3, Si sensor 300 µm Sample: Metallic grid Resolution = $10 \,\mu m$ **Event count Cluster area** Spatial distribution: Event counts Spatial distribution: Cluster area 8 300 100 50 8 10 5 Y-position [mm] 35 Y-position [mm] 25 Cluster Area [px] Events [#] 6 6 6 7 8 6 7 8 X-position [mm] X-position [mm] All events incl. background

∧ D ∨ A C A M Imaging the Unseen

Cristina Oancea | 5th Annual LLU Workshop July 2019 | Loma Linda USA

Proton beam, 3 MeV, Tandetron

Cristina Oancea | 5th Annual LLU Workshop July 2019 | Loma Linda USA

- Particle imaging with Timepix and Timepix3 detectors Summary, Outlook, References
- Simplified instrumentation, single detector setup
- Multi-parameter imaging-contrast radiographies
 - Event-by-event analysis (cluster area, energy, flux)
- Need for well-defined energy of primary beam

<u>A DVARAM</u>

Imaging the Unseen

- Spatial resolution \approx few μ m, possible sub μ m (800 nm)
- Directional and time response can be exploited, improve image quality
- J. Jakubek, et al., Pixel Detectors for Imaging with Heavy Charged Particles, Nucl. Instr. and Meth. A 591 (2008) 155-158
- T. Gehrke, et al., Proof of principle of helium-beam radiography using silicon pixel detectors for energy deposition measurement, identification, and tracking of single ions, Med. Phys. (2018)

References & Questions at: cristina.oancea@advacam.com

Light ion / high energy Helium imaging with Timepix3 telescopes

Multi-detector / telescope arrays

<u>A d v a c</u>

- T. Gehrke, et al., Theoretical and experimental comparison of proton and helium-beam radiography using silicon pixel detectors, Physics in Medicine and Biology (2018)
- M. Martisikova, T. Gehrke, et al., Helium ion beam imaging for image guided ion radiotherapy, Rad. Oncology 13 (2018) 109

Backup slides

Large area WidePix detectors with CdTe and Si sensors The large area CdTe imaging detector with continuous sensitivity

Features:

- Pixel size of **55 μm**
- 1280 x 1280 pixels = **1.6 Mega pixels**
- Sensitive area of **70 x 70 mm² (can be larger if needed)**
- Gap-less tilling:

Imaging the Unseen

- Gaps between modules smaller than guarter of the pixel 0
- Edge pixels of 100 µm Ο

Supported sensor types: (Bias voltage +/- 500 V)

- CdTe 1 mm
- CdTe 2 mm
- Si 300 µm

M Particle Tracking with AdvaPIX TimePIX3

Directional per pixel E measurements vs particle type and angle

40 MeV ³He- (top row) and 31 MeV protons (bottom row) from the NPI-CAS Cyclotron, Prague

Si 500µm

Nuclear Physics Institute of the CAS

public research institution

A D V A C A M Imaging the Unseen

Cristina Oancea | 5th Annual LLU Workshop July 2019 | Loma Linda USA