Overview of Machine Learning in Medical Imaging

Hanh Nguyen

5th Annual Loma Linda Workshop

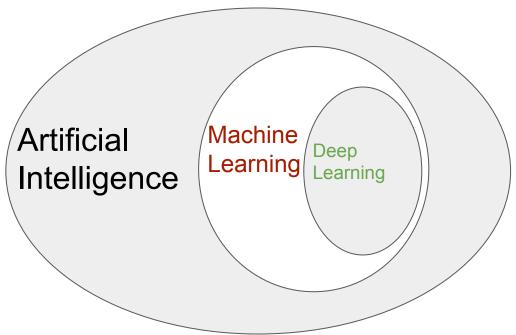
Machine Learning

Robotics
Speech Processing
Natural Language Processing
Data mining
Machine Learning

. . .

Deep Learning
Decision Trees
Clustering
Genetic Algorithms

. . . .



Convolutional Neural Network Recurrent Neural Network

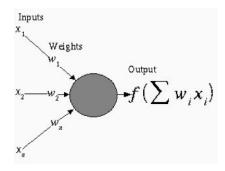
. . .

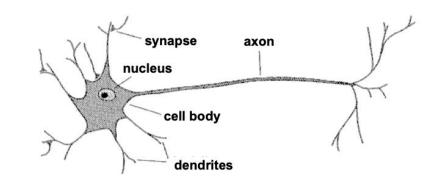
Machine Learning

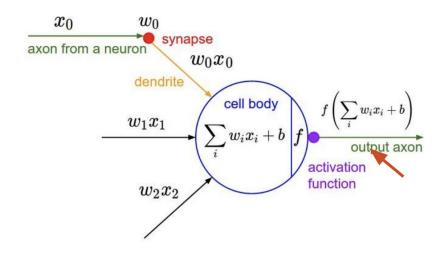
- Supervised
 - training data + desired inputs
- Unsupervised
 - training data
- Semi-supervised
 - training data + a few desired inputs
- Reinforcement
 - rewards from sequence of action



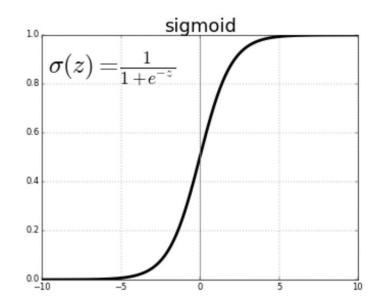
Perception

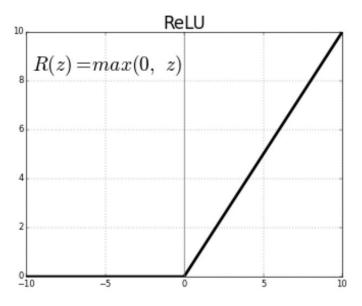


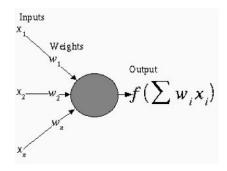


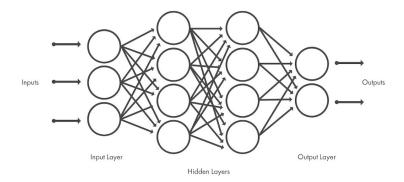


Activation functions

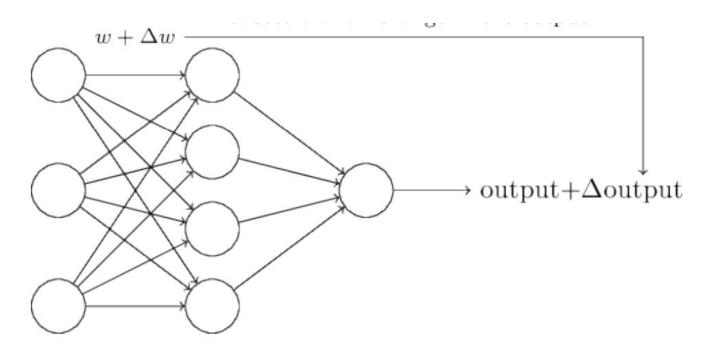




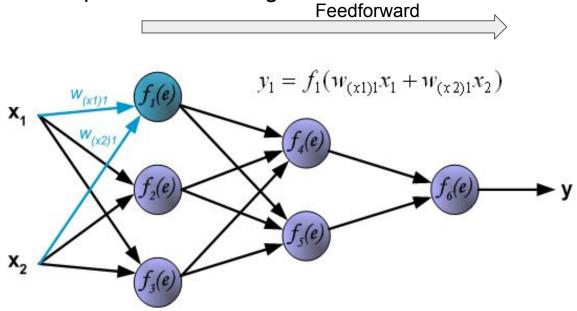




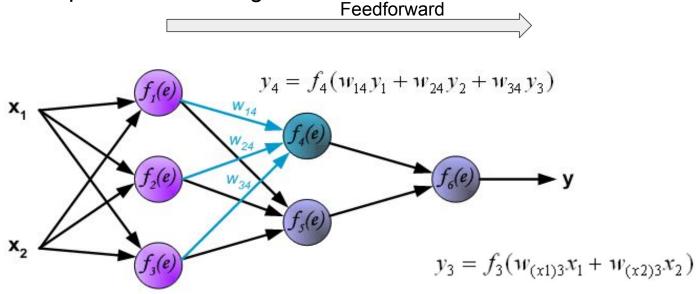
Ouput changes as weight changes



- Propagate the input forward through the network:

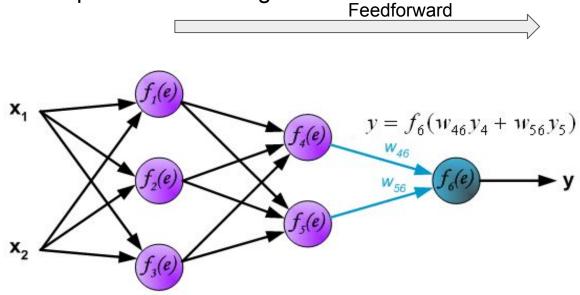


- Propagate the input forward through the network:

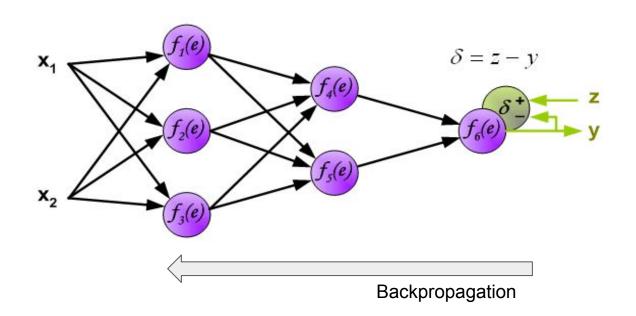


$$y_2 = f_2(w_{(x1)2}x_1 + w_{(x2)2}x_2)$$

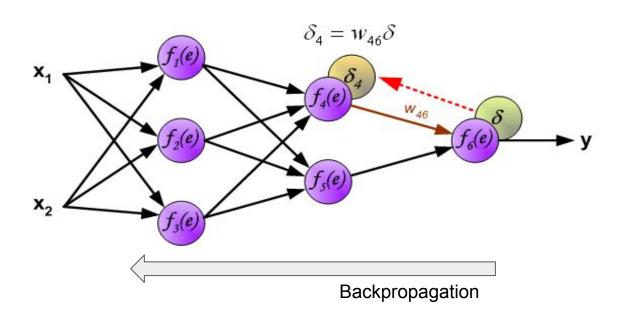
- Propagate the input forward through the network:



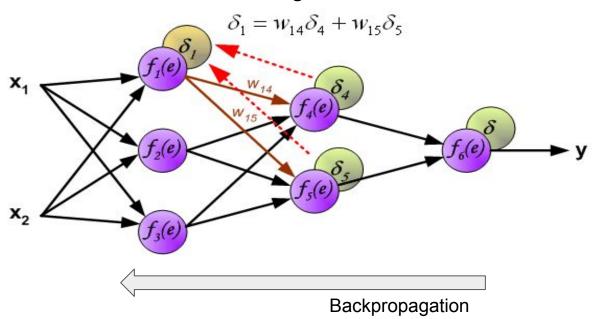
- Calculate the error

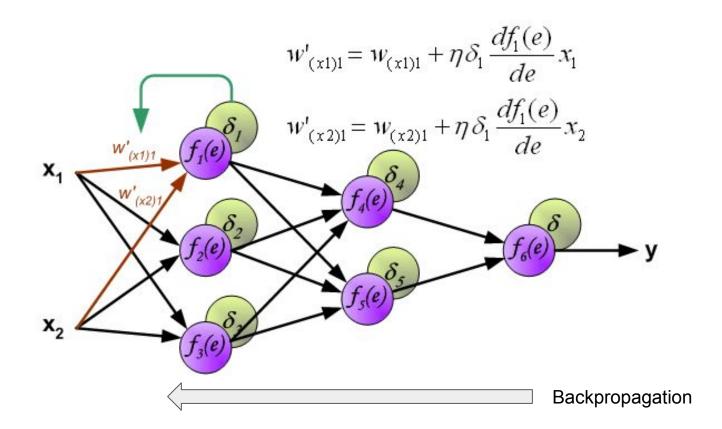


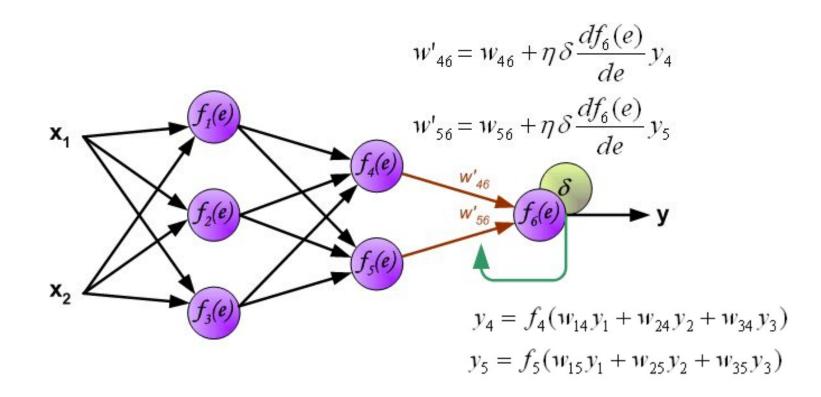
- Propagate the error backward through the network:



- Propagate the error backward through the network:

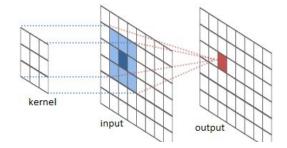


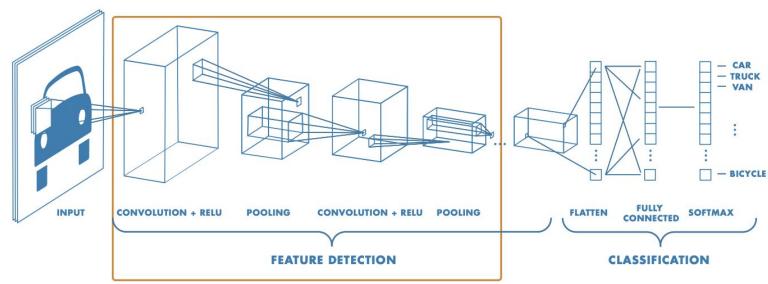




Convolutional Neural Network

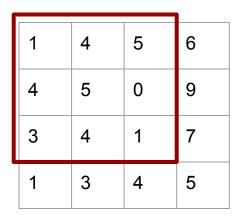
Convolution and Neural Network

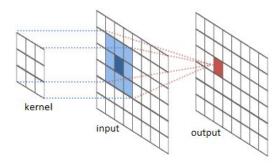




Convolutional Neural Network

Convolution in image

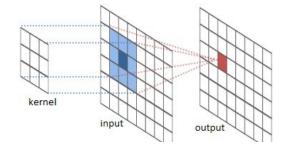


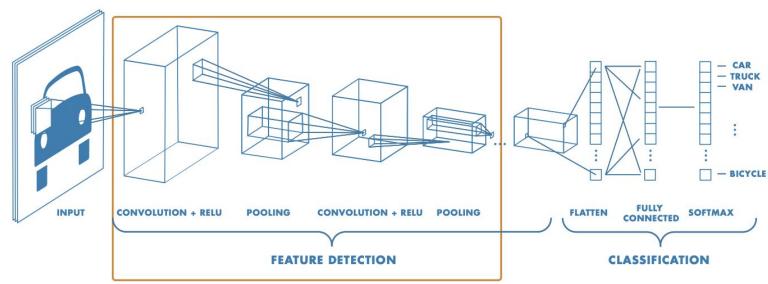


0	-1	0
-1	5	-1
0	-1	0

Convolutional Neural Network

Convolution and Neural Network





Machine Learning in Medical Imaging

- Mitosis Detection in Breast Cancer
 Histology Images via Deep
 Cascaded Networks
 - 12-layer CNN trained on samples from 50 2084 × 2084 RGB images manually annotated
 - 35 training images
 - 15 testing images

Mitosis Detection in Breast Cancer Histology Images via Deep Cascaded Networks

Hao Chen, Qi Dou, Xi Wang, Jing Qin, Pheng Ann Heng

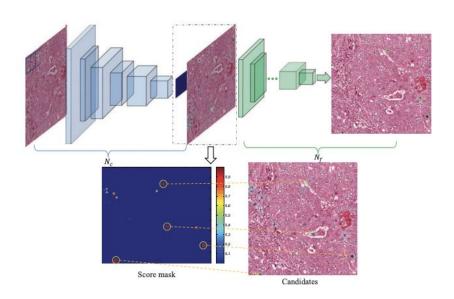
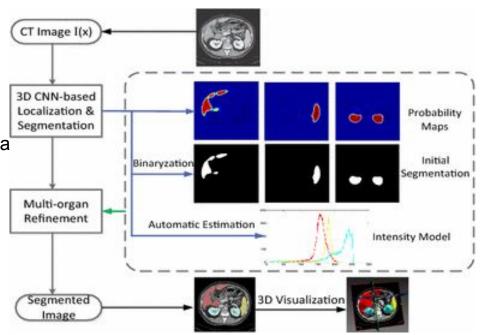


Figure 2: An overview of the proposed deep cascaded networks for fast and accurate mitosis detection.

Machine Learning in Medical Imaging

- Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets
 - 10-layer CNN trained on 140 abdomina
 CT scans
 - 4 organ segmentation rate ≥ 94%
 - Liver
 - Spleen
 - Kidneys

Hu, Peijun, et al. "Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets." International Journal of Computer Assisted Radiology and Surgery (2016): 1-13.



Machine Learning in Medical Imaging

 Colorectal Segmentation using Multiple Encoder-Decoder Network in Colonoscopy Images

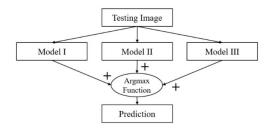


Fig. 3: Block diagram of the proposed model combination in testing phase.

Q. Nguyen and S. Lee, "Colorectal Segmentation Using Multiple Encoder-Decoder Network in Colonoscopy Images," 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, 2018, pp. 208-211.

TABLE I: Result comparision with previous approaches.

Criterion	Accuracy	Dice score	mIoU	Database
[7]	0.975	0.701	NA	CVC-ClinicDB
[11]	0.977	0.810	NA	CVC-ClinicDB
[8]	0.949	NA	72.74	CVC-ClinicDB
Proposed Method	0.984	0.889	89.35	CVC-ClinicDB

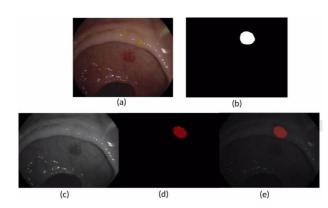
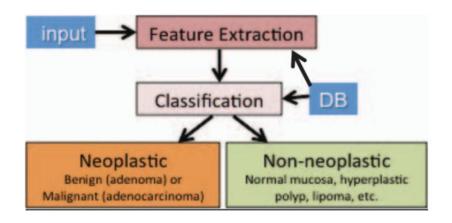


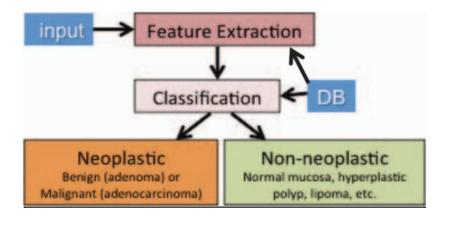
Fig. 4: Result in ETIS-LaribPolypDB testing set, (a) testing image, (b) response ground truth, (c) grayscale testing image, (d) prediction image, (e) prediction overlay image.

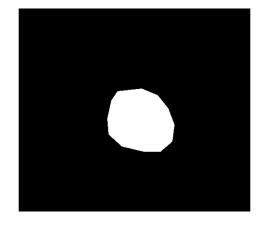
Narrow Band Imaging (NBI) vs. White Light (WL)

- 113 patients, 128 polyps
- 68 adenomas
- 60 non-adenomas

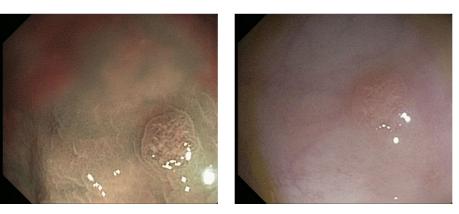
T. Dassopoulos, A. Karargyris, S. Makrogiannis and N. Bourbakis, "A preliminary study for automatic accurate detection of adenomatous polyps in the small intestine," *2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)*, Orlando, FL, 2017, pp. 117-120.

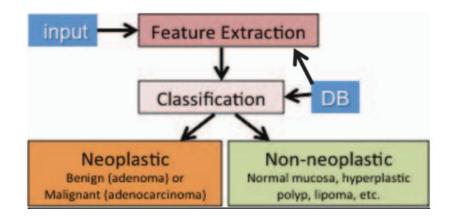






T. Dassopoulos, A. Karargyris, S. Makrogiannis and N. Bourbakis, "A preliminary study for automatic accurate detection of adenomatous polyps in the small intestine," *2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)*, Orlando, FL, 2017, pp. 117-120.

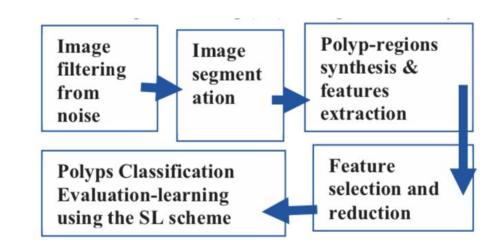




T. Dassopoulos, A. Karargyris, S. Makrogiannis and N. Bourbakis, "A preliminary study for automatic accurate detection of adenomatous polyps in the small intestine," 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, 2017, pp. 117-120.

Features

- Color Layout Descriptor
- Edge Histogram Descriptor
- Color and Edge Directivity Descriptor
- Fuzzy Color and Texture Histogram Descriptor
- Gabor filter descriptor
- Gray Level Co- Occurrence Matrices (Haralick features)
- Tamura's texture features
- Edge Frequency descriptor
- Autocorrelation feature
- Primitive length feature.



	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.706	0.483	0.623	0.706	0.662	0.664	Adenoma
	0.517	0.294	0.608	0.517	0.559	0.664	Non-Adenoma
Weighted Avg.	0.617	0.395	0.616	0.617	0.614	0.664	
Table 1. Classification Results for WL images set							
	TP Rate	FP Rate	Precision	Recall	F- Measure	ROC Area	Class
	0.794	0.433	0.675	0.794	0.73	0.769	Adenoma
	0.567	0.206	0.708	0.567	0.63	0.769	Non- Adenoma
Weighted Avg.	0.688	0.327	0.691	0.688	0.683	0.769	

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.838	0.433	0.687	0.838	0.755	0.767	Adenoma
	0.567	0.162	0.756	0.567	0.648	0.767	Non-Adenoma
Weighted Avg.	0.711	0.306	0.719	0.711	0.705	0.767	

Table 2. Classification Results for NBI images set

Table 3. Classification Results for both WL and NBI set

Goal:

archive ≥ 90% net percentage value of detection for adenoma

archive ≥ 90% agreement between the system-based and the standard, pathology-based recommendations

