

LOMA LINDA UNIVERSITY



North

America Particle

#### Current status and Therapy Alliance potential directions for our ID work with DKFZ-HIT

Bruce Faddegon<sup>†1</sup>, Eleanor Blakely<sup>2</sup>, Kathleen Bjornstad<sup>2</sup>, Jose Ramos Mendez<sup>1</sup>, Lucas Burigo<sup>3</sup>, Stephan Brons<sup>4</sup>, Sara Chiblak<sup>4</sup>, Amir Abdollah<sup>3,4</sup>, Reinhard Schulte<sup>5</sup>, and Mack Roach, III<sup>1</sup>

<sup>1</sup>UCSF, San Francisco, CA, USA. <sup>2</sup>LBNL, Berkeley, CA, USA. 94720, <sup>3</sup>DKFZ, Heidelberg, Germany. <sup>4</sup>HIT, Heidelberg, Germany. <sup>5</sup>Loma Linda University, Loma Linda, CA, USA.



# Ion-therapy planning that incorporates ionization detail

- Background and motivation
- Experimental procedure and results
- Conclusions
- Future
- Acknowledgments:
  - Primary human clival chordoma cell line UM-Chor1 kindly provided by the Chordoma Foundation
  - Partial support from NIH 1P20CA183640 grant (PI Mack Roach III)



#### ID: Ionization Detail





#### Motivation

- Details of the pattern of ionization deposition (ID) along ion tracks are important to the biological effect, such that knowledge of the ID may improve individual patient treatment plans
- However, ID calculation relies on time consuming track structure simulation
- We incorporate pre-calculated ID into the treatment plan, in this case to increase uniformity in the density of large clusters across the target volume
- What is the best choice of ID? Ideally, this is based on radiology experiments



### Nick experiment at HIT





Place cells in cube: Primary human clival chordoma cell line UM-Chor1





Plates stacked 3 high: 48 wells









### Pre-calculated ID

Track-structure simulation with TOPAS-nBio/Geant4-DNA





Use of pre-calculated ID for voxel-based ID estimation Macroscopic approach and verification with track structure simulations





## Treatment plans: LEM alone

#### 12C PA: 112.6 - 222.3 MeV/u 12C RL: 95.7 - 196.2 MeV/u

#### **RBE-weighted dose**

#### ID: Large cluster density





#### Treatment plans: Uniform ID 12C PA: 100.1 - 222.3 MeV/u Simultaneous optimization of LEM and ID using (MatRad from DKFZ)

RBE-weighted dose





Burigo et al, Phys Med Biol 64:015015-27, 2019

## Results: LET (keV/ $\mu$ m) for LEM alone

LET statistical uncertainty of 8% (1 standard deviation)

|   | TOP WELLS |    |    |    | MIDDLE WELLS |           |    |    | BOTTOM WELLS |           |           |    |
|---|-----------|----|----|----|--------------|-----------|----|----|--------------|-----------|-----------|----|
|   | <b>A1</b> | B1 | C1 | D1 | <b>A2</b>    | <b>B2</b> | C2 | D2 | <b>A3</b>    | <b>B3</b> | <b>C3</b> | D3 |
| а | 51        | 51 | 54 | 63 | 52           | 51        | 51 | 54 | 56           | 55        | 55        | 58 |
| b | 41        | 41 | 48 | 58 | 38           | 38        | 41 | 51 | 39           | 39        | 42        | 51 |
| с | 33        | 34 | 44 | 56 | 32           | 33        | 40 | 52 | 33           | 34        | 41        | 52 |
| d | 30        | 33 | 44 | 55 | 29           | 33        | 40 | 52 | 29           | 33        | 41        | 51 |





### Results: LEM+ID result/LEM result

#### Average ID for each well for all 3 plates

LET ratio (± 0.04)

f3 ratio (± 0.006)

|   | Α    | В    | С    | D    | Α     | В     | С     | D     |
|---|------|------|------|------|-------|-------|-------|-------|
| а | 0.95 | 1.03 | 1.06 | 1.08 | 0.988 | 0.999 | 1.002 | 1.004 |
| b | 1.26 | 1.37 | 1.28 | 1.06 | 1.037 | 1.048 | 1.033 | 1.005 |
| с | 1.43 | 1.54 | 1.30 | 1.05 | 1.064 | 1.071 | 1.042 | 1.004 |
| d | 1.25 | 1.41 | 1.18 | 0.95 | 1.047 | 1.062 | 1.029 | 0.990 |



## Results: HIT experiment

- A <u>high plating efficiency of 44.3%</u> was achieved at HIT, double of that at LBNL. This is under investigation with particular attention being paid to the different sources (US vs German) of the components of the growth media used.
- Survival was defined as <u>30 or more cells per colony</u> instead of the usual 50 to account for shorter time given for colonies to grow (colonies were crowded due to higher than expected plating efficiency, <u>~400 colonies per flask</u>)

### Nick Experiment

















#### Results: Flasks for colony counts, LEM trial 2







#### Survival dependence on ID

## Ratio of LEM+ID result to LEM result averaged over all 3 platesSurvival ratio (± 0.37)f3 ratio (± 0.01)

|   | Α    | В    | С    | D    | Α    | В    | С    | D    |
|---|------|------|------|------|------|------|------|------|
| а |      |      |      |      |      |      |      |      |
| b |      | 1.31 | 1.39 |      |      | 1.05 | 1.03 |      |
| с |      | 1.61 |      |      |      | 1.07 |      |      |
| d | 0.99 | 1.24 | 0.79 | 0.90 | 1.05 | 1.06 | 1.03 | 0.99 |

Survival averaged over 3 repeats x 3 wells in the stacked plates





## Survival dependence on ID

Ratio of LEM+ID result to LEM result averaged over all 3 plates



#### Conclusion

- Methodology has been established to compare measured and calculated biological effect across the target volume in an anthropomorphic phantom irradiated with clinically realistic treatment plans that incorporate ionization detail
- We are working on improving accuracy so that the method is capable of providing a clinically meaningful comparison between alternative methods of biologically-based treatment plans





# Future of ID based treatment planning research

- Find alternative cell viability endpoint capable of providing a clinically meaningful comparison between alternative methods of biologically-based treatment plans:
  - Reliably measure a change in cell viability due to a 3% difference in dose with comparable ID
- Choose ID's from simple to complex that correlate with cell survival
  - Choice of ID is a juxtaposition of physics, chemistry, biology, and math (statistics)
  - Measure survival and cell viability dependence on various ID
- Perform Nick experiment for a selection of ID
  - Simultaneous optimization with clinical RTP systems (LEM, etc.)
  - Stand-alone ID-based treatment planning

