

TRANSFORMING PROTON THERAPY

Experimental Results from a Prototype Clinical Proton Imaging System

Ethan DeJongh, ProtonVDA LLC July 22 2019

Proton Imaging can help reduce range uncertainties by directly measuring proton stopping power

We aim to:

Develop a proton imaging system based on well-established fast scintillator technology.

- 1. \rightarrow High-performance, low-cost measurements of proton range.
- 2. Achieve lower dose to the patient relative to equivalent x-ray images.
- 3. Produce spatially sharp images.
- 4. Images free of artifacts from high-Z implants.

Multidisciplinary team of detector physicists, medical physicists, computer scientists, and radiation oncologists:

- ProtonVDA: Fritz DeJongh, Ethan DeJongh, Victor Rykalin, Igor Polnyi
- Loyola Stritch School of Medicine: James Welsh
- Northwestern Medicine Chicago Proton Center: Mark Pankuch
- Northern Illinois University, Dept. of Computer Science: Nick Karonis, Cesar Ordonez, John Winans, Kirk Duffin. Dept. of Physics: George Coutrakon, Christina Sarosiek

Fiber layout cross-section for one tracking plane:

:	30	3	31		C)	1	L	2	2	3	3	
	3	31		0		1	L	2	2	3	3	4	
X = 0 X = 0.075 X = 0.025								<u></u>	0.1				

- X-Y tracking planes upstream and downstream
- Multiplexed fiber readout
 - 32 digitized channels per tracking plane

- position ambiguities resolved using pencil beam targeting information

- reduces amount of electronics needed

- 40 x 40 x 13 cm block of scintillator for range detector
 - 4 x 4 array of PMTs
 - Output digitized into four channels: E, U, V,C
- Individual protons tracked at up 10 MHz
- > 99% tracking efficiency
- WEPL resolution ~ 3 mm per proton
- 40 x 40 cm image field size
- Fast (<1 min) image reconstruction for radiograph

From e-poster, C. Sarosiek M. Pankuch, et al "Distribution of patients that can be imaged with 235 MeV protons"

Analysis of recent Northwestern patients Simulated proton radiographs from x-ray CT scans

15-

10

5

۲ (cm)

-5-

-10

-15

-15

Our first real image – block of wood with screws

• Single 120 MeV Scan

WEPL (cm)

WEPL (cm)

Fast (~1 min) online image reconstruction

Water bottle plus solid water - 180 MeV

Tape dispenser plus solid water - 180 MeV

Uniform scan of 116.4 MeV protons across range detector

- Four range detector channels used for 150 range measurement and cuts/corrections
- E sum of all 16 PMT signals
- U & V diagonally weighted sums for position information
- C Inside-outside weighted sum for radial information

- Time between events is randomly distributed
- Protons arrive one at a time with great consistency (>99% at 1 MHz)

Calibration Energy: 116.4 MeV (Range ~10.1 cm)

Calibration Energy: 118 MeV (Range ~10.3 cm)

Calibration Energy: 119.6 MeV (Range ~10.6 cm)

Calibration Energy: 121.2 MeV (Range ~10.9 cm)

Calibration Energy: 122.8 MeV (Range ~11.1 cm)

Calibration Energy: 124.4 MeV (Range ~11.4 cm)

Calibration Energy: 126 MeV (Range ~11.6 cm)

Linear detector response vs. range gives very good range sensitivity

Position near center of detector

Pediatric Head Phantom with CIRS Inserts

Imaging with Multiple Proton Energies – Pediatric Head Phantom

Y (cm)

Y (cm)

10.14 Y (cm) -5 -10 -10 -5 X (cm)

WEPL^2 (cm)

Detector Alignment Procedure

- Pencil beam targets an array of spots prior to imaging scans.
 - Beam is aimed at locations specified in isocenter coordinates.
- Software compares measured spot positions to expected positions
- Allows for automatic transformation of detector coordinates to isocenter coordinates, accounting for detector positioning.
 - Image is automatically presented in isocenter coordinates, with no need for QA on detector alignment.

Proton spot positions on one tracking plane

Nominal

Detectors Shifted left, Phantom in Same Position

Detectors shifted right, phantom in same position

CATPHAN Line Pair Phantom

Offline reconstruction Note: grey scale range only 3 mm!

As to range sensitivity.. We clearly see the 0.2 mm tape supporting the phantom. The density of this tape is slightly above water density.

We see 7 line pairs/cm with 0.5 mm pixel size

Measuring spatial resolution at different depths in water – line pair phantom plus 16 cm water

• Absolute WET Measurements

- George phantom
 - Blue bolus wax background, RSP = 0.98
 - 15 cm diameter
 - 4 cm thick
 - 8 CIRS tissue-equivalent materials, RSP = 0.22 - 1.755
 - 1.8 cm diameter inserts

Insert	Truth (cm)	Mean (cm)	Physical Error (cm)	Percent Error (%)
Sinus	0.88	0.84	-0.04	4.54
Enamel	7.02	7.04	0.02	0.28
Cortical Bone	6.22	6.25	0.03	0.48
Spinal Cord	4.16	4.22	0.06	1.44
Spinal Disc	4.28	4.34	0.06	1.40
Brain	4.16	4.22	0.06	1.44
Dentin	5.98	5.98	0.0	0.0

WEPL (cm)

Measuring changes in WET using phantom with known materials inserted into cavity

• Averaging WEPL into pixels based on MLPdetermined position on isocenter plane (no iterative solver)

Measured difference: -10.82 ± 0.04 mm

Measured difference: $+31.31 \pm 0.04$ mm

Measured difference: -0.05 ± 0.01 mm

Measured difference: $+0.64 \pm 0.01$ mm

Measured difference: $+7.83 \pm 0.01$ mm

Measured difference: $+1.26 \pm 0.01$ mm

Insert: dentin

Expected difference: +4.0 mm Measured difference: $+4.04 \pm 0.01$ mm

Blue wax inserts (RSP 0.977) of varying lengths

Insert: air

Change in insert thickness: +39.98 mm

Expected difference: +39.06 mm Measured difference: +38.57 \pm 0.07 mm

Change in insert thickness: -0.88 mm

Expected difference: -0.86 mm Measured difference: -0.82 \pm 0.03 mm

Change in insert thickness: -1.01 mm

Expected difference: -0.99 mm Measured difference: -0.88 \pm 0.04 mm

Change in insert thickness: -1.02 mm

Expected difference: -1.00 mm Measured difference: -1.00 \pm 0.03 mm

Change in insert thickness: -1.04 mm

Expected difference: -1.02 mm Measured difference: -0.97 \pm 0.03 mm

Change in insert thickness: -0.51 mm

Expected difference: -0.50 mm Measured difference: -0.52 \pm 0.04 mm

Change in insert thickness: -0.43 mm

Expected difference: -0.42 mm Measured difference: -0.34 \pm 0.03 mm

MLP-binning Reconstruction

Expected difference: -0.50 mm Measured difference: -0.52 \pm 0.04 mm

CARP Reconstruction

Expected difference: -0.50 mm Measured difference: -0.52 \pm 0.04 mm

Low Contrast Phantom

- Inserts with 0.3% - 1% contrast

Note 0.8 mm greyscale!

WEPL (cm)

Our First pCT Image!

Plastic block with holes and inserts including steel drill bit

Done with:

- Scanning pencil beam
- Continuous rotation

George Phantom pCT slice

- Made with 3 energies: 195, 160, and 118 MeV

- Continuous rotation on a simple rotating display device

Simulated pCT image of cylinder of water with the same 3 energies - sum of 30 slices

WEPL (cm)

Back to real image...

- Residual range limits set to 2-10 cm

- allowing overlap between energies

WEPL (cm)

- Residual range limits set to 3-11 cm

- allowing overlap between energies

- Residual range limits set to 3-11 cm

- not allowing overlap between energies

TRANSFORMING PROTON THERAPY

Summary/Conclusions

- Our prototype proton radiography system produces accurate WET maps through an automatic, clinically practical process
- Images can be automatically reconstructed and displayed in isocenter coordinates
- Our system is capable of detecting very small variations and changes in WET
- Spatial resolution of <1 mm has been achieved, offering the potential for proton radiographs to be used for patient alignment in addition to range verification
- Initial pCT results show good RSP accuracy
- Work is being planned for automating pCT reconstruction
- We look forward to seeing this technology integrated into clinical use