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Motivation

I PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle
therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann,
2015]

I Main therapeutic advantage: Bragg peak in energy deposition

I Most of the energy is deposited toward the end of its trajectory in a sharp peak

I Advantageous in IMPT as the energy and intensity of individual pencil beams can be
manipulated to deposit a highly conformable dose to the tumour volume, with a low dose
on entry and no exit dose

LLU-Aug-2018 Incorporating bio. factors in RT treatment planning mark.brooke@oncology.ox.ac.uk @markdanbrooke 2



Motivation

I PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle
therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann,
2015]

I Main therapeutic advantage: Bragg peak in energy deposition

I Most of the energy is deposited toward the end of its trajectory in a sharp peak

I Advantageous in IMPT as the energy and intensity of individual pencil beams can be
manipulated to deposit a highly conformable dose to the tumour volume, with a low dose
on entry and no exit dose

LLU-Aug-2018 Incorporating bio. factors in RT treatment planning mark.brooke@oncology.ox.ac.uk @markdanbrooke 3



Motivation

I PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle
therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann,
2015]

I Main therapeutic advantage: Bragg peak in energy deposition

I Most of the energy is deposited toward the end of its trajectory in a sharp peak

I Advantageous in IMPT as the energy and intensity of individual pencil beams can be
manipulated to deposit a highly conformable dose to the tumour volume, with a low dose
on entry and no exit dose

LLU-Aug-2018 Incorporating bio. factors in RT treatment planning mark.brooke@oncology.ox.ac.uk @markdanbrooke 4



Motivation

I PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle
therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann,
2015]

I Main therapeutic advantage: Bragg peak in energy deposition

I Most of the energy is deposited toward the end of its trajectory in a sharp peak

I Advantageous in IMPT as the energy and intensity of individual pencil beams can be
manipulated to deposit a highly conformable dose to the tumour volume, with a low dose
on entry and no exit dose

LLU-Aug-2018 Incorporating bio. factors in RT treatment planning mark.brooke@oncology.ox.ac.uk @markdanbrooke 5



Motivation

I However the physical concept of dose – energy per unit mass – does not on its own
adequately describe tumour control and normal tissue complications in particle therapy

I Densely ionising particle tracks offer an increased cell-killing efficiency over sparsely
ionising x-rays

I May be quantified through various biological endpoints

I Quantification of radiobiological effects can be incorporated into treatment plan
optimization algorithms

I Seek a dose distribution that is both physically and biologically favourable
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Quantification of biological effects
Relative Biological Effectiveness

Definition
Relative Biological Effectiveness (RBE): the dose delivered using a specific modality and energy
that yields the same biological effect as a reference dose in a reference modality;

RBE<endpoint> =
Dose of reference radiation

Dose of test radiation
. (1)

I Commonly used endpoint is the number of surviving cells in a culture by clonogenic
survival assay following irradiation

I In-vivo prediction of the RBE, however, is required for radiation therapy

I In-vitro cell data on its own is unsatisfactory
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Quantification of biological effects
Relative Biological Effectiveness

I Major mechanism for cell kill is believed to be the induction of double strand breaks
(DSBs) in nuclear DNA [Caldecott, 2008; Ward, 1985]

I we choose to define a restricted RBE for complex damage based on DSB induction

Definition
Restricted RBE for complex damage: ratio of the number of DSBs in the modality of interest
to the number generated in a reference modality depositing the same dose;

RBEcd =

(
#DSB induced by test radiation
#DSB induced by test radiation

)
same dose

. (2)
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Modeling DNA damage
Linear energy transfer (LET)

I Differential loss of kinetic energy over
distance given by stopping power 〈dE/dl〉

I Microdosimetry: linear energy transfer
(LET) is used instead – which is stopping
power but with energy delivered to highly
energetic knock-on electrons subtracted

I Density of ionisations along track can
therefore be measured using LET and is
closely related to the kinetic energy of the
particle

Figure: Image cropped from Fig 1 in [Lomax et al., 2013].
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Modeling DNA damage
Single particle interaction model

I Approximate a section of the DNA as a
cylinder

I Use the energy dependent mean free path
λ(E ) between successive ionisations to
determine the distribution of clustered
lesions [Van den Heuvel, 2014]

I Angular dependence: larger θ =⇒ longer
path through DNA =⇒ higher LET and
greater likelihood of inducing clustered
damage

Figure: Image from Figure 1 in [Van den Heuvel, 2014].
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Modeling DNA damage
Single particle interaction model

I Problem is equivalent to setting an
isotropic point source at the boundary of
the cylinder

I Reduces mathematically to that of the
distribution of projections of a point
source on a line-piece

I Solution: Cauchy distribution

Figure: Image from Figure 1 in [Van den Heuvel, 2014].
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Modeling DNA damage
Single particle interaction model

I Using λ(E ), the distribution of DSBs may be
reformulated as a function of E instead of θ

I Damage response function: expected yield of
DSBs given by [Van den Heuvel, 2014]

Fcd(E ) = (a−b)
2
π

[
tan−1

(
E − E0

Γ/2

)]
+b (3)

I Units: Gbp−1Gy−1

Figure: Image from Figure 1 in [Van den Heuvel, 2014].
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Modeling DNA damage
Single particle interaction model

I Parameters a, b, Γ, and E0 fitted through a two-stage
χ2 minimisation

I 1. Differential Lorentz distribution dFcd/dE

I 2. Cumulative Cauchy distribution Fcd

I Good agreement with microscopic Monte Carlo
software MCDS [Semenenko and Stewart, 2004]

Figure: Images from Figures 3(b) and 4(b) in
[Van den Heuvel, 2014].
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Voxelised RBE distribution

I Dose deposited in each voxel D[i , j .k] of the
patient CT

I Energy spectrum Ψijk(E ) in a voxel (by Monte
Carlo or analytic models)

I Yield of complex damage Mcd[i , j , k] can be
calculated using the response function

Mcd[i , j , k] = D[i , j , k] ×
∫ Emax[i,j,k]
0 Ψijk (E)Fcd (E)dE∫ Emax[i,j,k]

0 Ψijk (E)dE
(4)

I

RBEcd = Mcd,p/Mcd,γ (5)

Figure: Image from Figure 6(b) in [Van den Heuvel, 2014].
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Further considerations
Oxygen level modeling

I Amount of oxygen binding that can occur has a
saturation behaviour

I Can be modeled using second order D.E.
[Kepner, 2010; Van den Heuvel, 2014]

(d2y/dx2)dx

(dy/dx)
= N

(
dy

y

)
−M

(
dx

x

)
(6)

I In hypoxic conditions, only low-level damage
component is reduced
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Further considerations
Simplifying electron spectra

I Electronic build-up in entrance channel

I Otherwise, energy spectrum weakly dependent
on depth
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Further considerations
Simplifying electron spectra

I Weak depth dependence seen in proton beam

I Resulting difference between electron-induced
complex damage yield almost constant

I Consequence: only need to measure proton
spectra

I In Monte Carlo, can calculate Fcd(E ) on the fly
for each history instead of obtaining a spectrum
explicitly
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complex damage yield almost constant

I Consequence: only need to measure proton
spectra

I In Monte Carlo, can calculate Fcd(E ) on the fly
for each history instead of obtaining a spectrum
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Further considerations
Quantum chemistry and scattering

I Use density functional theory (DFT) to
obtain electron distribution in small (10bp)
segment of B-DNA

I Calculate electrostatic potential map

I Find cross-section from scattering through
Born series

I Second term in expansion is proportional
to probability of two ionisation events
within 10bp. This is labelled a DSB

I Use more terms for more clustered damage

Figure: From [Pullman et al., 1983].
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Summary of project aims

I Refine physical DNA-damage model

I Incorporate RBE into TPS on a voxel-by-voxel basis for proton and other particle (e.g.
helium ion, carbon ion) therapies

I Provide algorithmic framework for fast IMPT optimization (PTV- and robustness-based)
which includes constraints on the RBE distribution.
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